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❘ Introduction

xiii

The C# community is very different in 2010 than it was in 2004 when the 
first edition of Effective C# was published. There are many more develop-
ers using C#. A large contingent of the C# community is now seeing C# as 
their first professional language. They aren’t approaching C# with a set of 
ingrained habits formed using a different language. The community has a 
much broader range of experience. New graduates all the way to profes-
sionals with decades of experience are using C#.

The C# language has also grown in the last five years. The language I cov-
ered in the first edition did not have generics, lambda expressions, LINQ, 
and many of the other features we now take for granted. C# 4.0 adds new 
features that change our toolset again. And yet, even with all the growth in 
the C# language, much of the original advice is as relevant now as it was 
in the C# 1.x days. Viewed in hindsight, the changes to the C# language 
appear to be natural and obvious extensions to what we had in C# 1.0. 
New editions give us new ways of solving problems, without invalidating 
previous idioms.

I organized this second edition of Effective C# by taking into account both 
the changes in the language and the changes in the C# community. Effec-
tive C# does not take you on a historical journey through the changes in 
the language. Rather, I provide advice on how to use the current C# lan-
guage. The items that have been removed from this second edition are 
those that aren’t as relevant in today’s C# language. The new items cover 
the new language and framework features, and those practices the com-
munity has learned from building several versions of software products 
using C#. Overall, these items are a set of recommendations that will help 
you use C# 4.0 more effectively as a professional developer.

This book covers C# 4.0, but it is not an exhaustive treatment of the new 
language features. Like all books in the Effective Software Development 
Series, this book offers practical advice on how to use these features to 
solve problems you’re likely to encounter every day. Many of the items are 
equally valid in the 3.0 and even earlier versions of the language.
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xiv ❘ Introduction

Who Should Read This Book?

Effective C# was written for professional developers who use C# as part of 
their daily toolset. It assumes you are familiar with the C# syntax and the 
language’s features. The second edition assumes you understand the new 
syntax added in C# 4.0, as well as the syntax available in the previous ver-
sions of the language. This book does not include tutorial instruction on 
language features. Instead, this book discusses how you can integrate all the 
features of the current version of the C# language into your everyday 
development.

In addition to language features, I assume you have some knowledge of 
the Common Language Runtime (CLR) and Just-In-Time (JIT) compiler.

About the Content

There are language constructs you’ll use every day in almost every C# pro-
gram you write. Chapter 1, “C# Language Idioms,” covers those language 
idioms you’ll use so often they should feel like well-worn tools in your 
hands. These are the building blocks of every type you create and every 
algorithm you implement.

Working in a managed environment doesn’t mean the environment 
absolves you of all your responsibilities. You still must work with the envi-
ronment to create correct programs that satisfy the stated performance 
requirements. It’s not just about performance testing and performance 
tuning. Chapter 2, “.NET Resource Management,” teaches you the design 
idioms that enable you to work with the environment to achieve those 
goals before detailed optimization begins.

In many ways, we write programs to satisfy human readers rather than a 
compiler. All the compiler cares about is that a program is valid. Our col-
leagues want to understand our intent as well. Chapter 3, “Expressing 
Designs in C#,” discusses how the C# language can be applied to express 
your design intent. There are always several ways to solve a problem. The 
recommendations in Chapter 3 will help you choose the solution that best 
expresses your design intent to fellow developers.

C# is a small language, supported by a rich framework library. Chapter 4, 
“Working with the Framework,” covers the portions of the .NET Base 
Class Library (BCL) that support your core algorithms. In addition, I cover
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some of the common idioms that you’ll encounter throughout the frame-
work. Multicore processors are a way of life, and the Parallel Task Library 
provides a step forward in creating multithreaded programs on the .NET 
platform. I cover the most common practices for the Parallel Task Library 
in this chapter.

Chapter 5, “Dynamic Programming in C#,” discusses how to use C# as a 
dynamic language. C# is a strongly typed, statically typed language. How-
ever, more and more programs contain both dynamic and static typing. C# 
provides ways for you to leverage dynamic programming idioms without 
losing the benefits of static typing throughout your entire program. You’ll 
learn how to use dynamic features and how to avoid having dynamic types 
leak through your entire program.

Chapter 6, “Miscellaneous,” covers those items that somehow continue to 
defy classification. These are the techniques you’ll use often to create 
robust programs that are easier to maintain and extend.

Code Conventions

We no longer look at code in monochrome, and we shouldn’t in books 
either. While it’s impossible to replicate the experience of using a modern 
IDE on paper, I’ve tried to provide a better experience reading the code in 
the book. Where the medium supports it, the code samples use the stan-
dard Visual Studio IDE colors for all code elements. Where I am pointing 
to particular changes in samples, those changes are highlighted.

Showing code in a book still requires making some compromises for space 
and clarity. I’ve tried to distill the samples down to illustrate the particu-
lar point of the sample. Often that means eliding other portions of a class 
or a method. Sometimes that will include eliding error recovery code for 
space. Public methods should validate their parameters and other inputs, 
but that code is usually elided for space. Similar space considerations 
remove validation of method calls, and try/finally clauses that would 
often be included in complicated algorithms.

I also usually assume most developers can find the appropriate namespace 
when samples use one of the common namespaces. You can safely assume 
that every sample implicitly includes the following using statements:

using System; 

using System.Collections.Generic;

Introduction ❘ xv
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using System.Linq; 

using System.Text; 

using System.Dynamic; 

using System.Threading;

Finally, I use the #region/#endregion directives to denote interface imple-
mentations. While that’s not necessary, and some dislike the region direc-
tive in code, it does make it easy to see which methods implement interface 
methods in static text. Any other option would be nonstandard and take 
more space.

Providing Feedback

Despite my best efforts, and the efforts of the people who have reviewed 
the text, errors may have crept into the text or samples. If you believe you 
have found an error, please contact me at bill.wagner@srtsolutions.com. 
Errata will be posted at http://srtsolutions.com/blogs/effectivecsharp. Many 
of the items in this book, and More Effective C#, are the result of email 
conversations with other C# developers. If you have questions or comments 
about the recommendations, please contact me. Discussions of general inter-
est will be covered on my blog at http://srtsolutions.com/blogs/billwagner.

Acknowledgments

There are many people to whom I owe thanks for their contributions to 
this book. I’ve been privileged to be part of an amazing C# community 
over the years. Everyone on the C# Insiders mailing list (whether inside or 
outside Microsoft) has contributed ideas and conversations that made this 
a better book.

I must single out a few members of the C# community who directly helped 
me with ideas, and with turning ideas into concrete recommendations. 
Conversations with Charlie Calvert, Eric DeCarufel, Justin Etheredge, 
Marc Gravell, Mike Gold, and Doug Holland are the basis for many new 
ideas in this edition.

I also had great email conversations with Stephen Toub and Michael Wood 
on the Parallel Task Library and its implications on C# idioms.

I had a wonderful team of technical reviewers for this edition. Jason Bock, 
Claudio Lassala, and Tomas Petricek pored over the text and the samples to
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ensure the quality of the book you now hold. Their reviews were thorough 
and complete, which is the best anyone can hope for. Beyond that, they 
added recommendations that helped me explain many of the topics better.

The team at Addison-Wesley is a dream to work with. Joan Murray is a 
fantastic editor, taskmaster, and the driving force behind anything that gets 
done. She leans on Olivia Basegio heavily, and so do I. Their contributions 
created the quality of the finished manuscript from the front cover to the 
back, and everything in between. Curt Johnson and Brandon Prebynski 
continue to do an incredible job marketing technical content. No matter 
what format you chose, Curt and Brandon have had something to do with 
its existence for this book. Geneil Breeze poured over the entire manu-
script improving explanations and clarifying the wording in several places.

It’s an honor, once again, to be part of Scott Meyer’s series. He goes over 
every manuscript and offers suggestions and comments for improvement. 
He is incredibly thorough, and his experience in software, although not in 
C#, means he finds any areas where I haven’t explained an item clearly or 
fully justified a recommendation. His feedback, as always, is invaluable.

I’ve also had the privilege of bouncing ideas off the other consultants at 
SRT Solutions. From the most experienced to the youngest, they are an 
incredibly smart group of people with great insight. They are also not 
afraid to express their opinions. Countless conversations with Ben Bare-
field, Dennis Burton, Marina Fedner, Alex Gheith, Darrell Hawley, Chris 
Marinos, Dennis Matveyev, Anne Marsan, Dianne Marsh, Charlie Sears, 
Patrick Steele, Mike Woelmer, and Jay Wren sparked ideas and samples. 
Later conversations helped clarify how to explain and justify different
 recommendations.

As always, my family gave up time with me so that I could finish this man-
uscript. My children Lara, Sarah, and Scott, put up with the times I hid in 
the home office and didn’t join in other activities. My wife, Marlene, gave 
up countless hours while I went off to write or create samples. Without 
their support, I never would have finished this or any other book. Nor 
would it be as satisfying to finish.

About the Author

With more than twenty years of experience, Bill Wagner, SRT Solutions 
cofounder, is a recognized expert in software design and engineering,
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Regional Director for Microsoft and is a multiyear winner of Microsoft’s 
MVP award. An internationally recognized writer, Bill is the author of the 
first edition of this book and More Effective C# (Addison-Wesley, 2009) and 
currently writes a column on the Microsoft C# Developer Center. Bill earned 
a B.S. in computer science from the University of Illinois at Champaign-
Urbana.
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1 ❘ C# Language Idioms

1

Why should you change what you are doing today if it works? The answer 
is that you can be better. You change tools or languages because you can be 
more productive. You don’t realize the expected gains if you don’t change 
your habits. This is harder when the new language, C#, has so much in 
common with a familiar language, such as C++ or Java. C# is another curly 
braced language, making it easy to fall into the same idioms you used in 
other languages in the same family. That will prevent you from getting the 
most out of C#. The C# language has evolved since its first commercial 
release in 2001. It’s now much farther removed from C++ or Java than it 
was in its original release. If you are approaching C# from another lan-
guage, you need to learn the C# idioms so that the language works with 
you, rather than against you. This chapter discusses the habits that you 
should change—and what you should do instead.

Item 1: Use Properties Instead of Accessible Data Members

Properties have always been first-class citizens in the C# language. Several 
enhancements since the 1.0 release of the C# language have made properties 
even more expressive. You can specify different access restrictions on the 
getter and setter. Implicit properties minimize the hand typing for proper-
ties instead of data members. If you’re still creating public variables in your 
types, stop now. If you’re still creating get and set methods by hand, stop 
now. Properties let you expose data members as part of your public inter-
face and still provide the encapsulation you want in an object-oriented 
environment. Properties are language elements that are accessed as though 
they are data members, but they are implemented as methods.

Some members of a type really are best represented as data: the name of a 
customer, the x,y location of a point, or last year’s revenue. Properties 
enable you to create an interface that acts like data access but still has all 
the benefits of a method. Client code accesses properties as though they are 
accessing public fields. But the actual implementation uses methods, in 
which you define the behavior of property accessors.
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2 ❘ Chapter 1  C# Language Idioms

The .NET Framework assumes that you’ll use properties for your public data 
members. In fact, the data binding classes in the .NET Framework sup-
port properties, not public data members. This is true for all the data bind-
ing libraries: WPF, Windows Forms, Web Forms, and Silverlight. Data 
binding ties a property of an object to a user interface control. The data 
binding mechanism uses reflection to find a named property in a type:

textBoxCity.DataBindings.Add("Text", 

address, "City");

The previous code binds the Text property of the textBoxCity control to 
the City property of the address object. It will not work with a public data 
member named City; the Framework Class Library designers did not sup-
port that practice. Public data members are bad practice, so support for 
them was not added. Their decision simply gives you yet another reason 
to follow the proper object-oriented techniques.

Yes, data binding applies only to those classes that contain elements that 
are displayed in your user interface logic. But that doesn’t mean proper-
ties should be used exclusively in UI logic. You should use properties for 
other classes and structures. Properties are far easier to change as you dis-
cover new requirements or behaviors over time. You might soon decide 
that your customer type should never have a blank name. If you used a 
public property for Name, that’s easy to fix in one location:

public class Customer 

{

private string name; 

public string Name 

{

get { return name; } 

set 

{

if (string.IsNullOrEmpty(value))

throw new ArgumentException(

"Name cannot be blank",

"Name"); 

name = value;

} 

// More Elided.

} 

}
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If you had used public data members, you’re stuck looking for every bit of 
code that sets a customer’s name and fixing it there. That takes more 
time—much more time.

Because properties are implemented with methods, adding multithreaded 
support is easier. You can enhance the implementation of the get and set 
accessors to provide synchronized access to the data:

public class Customer 

{

private object syncHandle = new object();

private string name; 

public string Name 

{

get 

{

lock (syncHandle) 

return name;

} 

set 

{

if (string.IsNullOrEmpty(value)) 

throw new ArgumentException(

"Name cannot be blank", 

"Name");

lock (syncHandle) 

name = value;

} 

} 

// More Elided.

}

Properties have all the language features of methods. Properties can be
 virtual:

public class Customer 

{

public virtual string Name 

{

get;

Item 1: Use Properties Instead of Accessible Data Members ❘ 3
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set; 

}

}

You’ll notice that the last examples use the C# 3.0 implicit property syn-
tax. Creating a property to wrap a backing store is a common pattern. 
Often, you won’t need validation logic in the property getters or setters. 
The language supports the simplified implicit property syntax to mini-
mize typing needed to expose a simple field as a property. The compiler 
creates a private member field (typically called a backing store) for you 
and implements the obvious logic for both the get and set accessors.

You can extend properties to be abstract and define properties as part of 
an interface definition, using similar syntax to implicit properties. The 
example below shows a property definition in a generic interface. Note 
that while the syntax is consistent with implicit properties, the interface 
definition below does not include any implementation. It defines a con-
tract that must be satisfied by any type that implements this interface.

public interface INameValuePair<T> 

{

string Name 

{

get; 

}

T Value 

{

get; 

set;

} 

}

Properties are full-fledged, first-class language elements that are an exten-
sion of methods that access or modify internal data. Anything you can do 
with member functions, you can do with properties.

The accessors for a property are two separate methods that get compiled 
into your type. You can specify different accessibility modifiers to the get 
and set accessors in a property in C#. This gives you even greater control 
over the visibility of those data elements you expose as properties:

4 ❘ Chapter 1  C# Language Idioms
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public class Customer 

{

public virtual string Name 

{

get; 

protected set;

} 

// remaining implementation omitted

}

The property syntax extends beyond simple data fields. If your type should 
contain indexed items as part of its interface, you can use indexers (which 
are parameterized properties). It’s a useful way to create a property that 
returns the items in a sequence:

public int this[int index] 

{

get { return theValues[index]; } 

set { theValues[index] = value; }

}

// Accessing an indexer: 

int val = someObject[i];

Indexers have all the same language support as single-item properties: 
They are implemented as methods you write, so you can apply any verifi-
cation or computation inside the indexer. Indexers can be virtual or 
abstract, can be declared in interfaces, and can be read-only or read-write. 
Single-dimension indexers with numeric parameters can participate in 
data binding. Other indexers can use noninteger parameters to define 
maps and dictionaries:

public Address this[string name] 

{

get { return adressValues[name]; } 

set { adressValues[name] = value; }

}

In keeping with the multidimensional arrays in C#, you can create multi-
dimensional indexers, with similar or different types on each axis:

public int this[int x, int y] 

{

Item 1: Use Properties Instead of Accessible Data Members ❘ 5
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get { return ComputeValue(x, y); } 

}

public int this[int x, string name] 

{

get { return ComputeValue(x, name); } 

}

Notice that all indexers are declared with the this keyword. You cannot 
name an indexer in C#. Therefore, every different indexer in a type must 
have distinct parameter lists to avoid ambiguity. Almost all the capabilities 
for properties apply to indexers. Indexers can be virtual or abstract; index-
ers can have separate access restrictions for setters and getters. You cannot 
create implicit indexers as you can with properties.

This property functionality is all well and good, and it’s a nice improve-
ment. But you might still be tempted to create an initial implementation 
using data members and then replace the data members with properties 
later when you need one of those benefits. That sounds like a reasonable 
strategy—but it’s wrong. Consider this portion of a class definition:

// using public data members, bad practice: 

public class Customer 

{

public string Name;

// remaining implementation omitted 

}

It describes a customer, with a name. You can get or set the name using the 
familiar member notation:

string name = customerOne.Name; 

customerOne.Name = "This Company, Inc.";

That’s simple and straightforward. You are thinking that you could later 
replace the Name data member with a property, and the code would keep 
working without any change. Well, that’s sort of true. Properties are meant 
to look like data members when accessed. That’s the purpose behind the 
syntax. But properties are not data. A property access generates different 
Microsoft Intermediate Language (MSIL) instructions than a data access.

Although properties and data members are source compatible, they are 
not binary compatible. In the obvious case, this means that when you

6 ❘ Chapter 1  C# Language Idioms
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change from a public data member to the equivalent public property, you 
must recompile all code that uses the public data member. C# treats binary 
assemblies as first-class citizens. One goal of the language is that you can 
release a single updated assembly without upgrading the entire applica-
tion. The simple act of changing a data member to a property breaks 
binary compatibility. It makes upgrading single assemblies that have been 
deployed much more difficult.

While looking at the IL for a property, you probably wonder about the rel-
ative performance of properties and data members. Properties will not be 
faster than data member access, but they might not be any slower. The JIT 
compiler does inline some method calls, including property accessors. 
When the JIT compiler does inline property accessors, the performance 
of data members and properties is the same. Even when a property acces-
sor has not been inlined, the actual performance difference is the negligi-
ble cost of one function call. That is measurable only in a small number of 
situations.

Properties are methods that can be viewed from the calling code like data. 
That puts some expectations into your users’ heads. They will see a prop-
erty access as though it was a data access. After all, that’s what it looks like. 
Your property accessors should live up to those expectations. Get accessors 
should not have observable side effects. Set accessors do modify the state, 
and users should be able to see those changes.

Property accessors also have performance expectations for your users. A 
property access looks like a data field access. It should not have perform-
ance characteristics that are significantly different than a simple data 
access. Property accessors should not perform lengthy computations, or 
make cross-application calls (such as perform database queries), or do 
other lengthy operations that would be inconsistent with your users’ 
expectations for a property accessor.

Whenever you expose data in your type’s public or protected interfaces, 
use properties. Use an indexer for sequences or dictionaries. All data mem-
bers should be private, without exception. You immediately get support 
for data binding, and you make it much easier to make any changes to the 
implementation of the methods in the future. The extra typing to encap-
sulate any variable in a property amounts to one or two minutes of your 
day. Finding that you need to use properties later to correctly express your 
designs will take hours. Spend a little time now, and save yourself lots of 
time later.

Item 1: Use Properties Instead of Accessible Data Members ❘ 7
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Item 2: Prefer readonly to const

C# has two different versions of constants: compile-time constants and 
runtime constants. They have very different behaviors, and using the 
wrong one will cost you performance or correctness. Neither problem is a 
good one to have, but if you must pick one, a slower, correct program is 
better than a faster, broken program. For that reason, you should prefer 
runtime constants over compile-time constants. Compile-time constants 
are slightly faster, but far less flexible, than runtime constants. Reserve the 
compile-time constants for when performance is critical and the value of 
the constant will never change between releases.

You declare runtime constants with the readonly keyword. Compile-time 
constants are declared with the const keyword:

// Compile time constant: 

public const int Millennium = 2000;

// Runtime constant: 

public static readonly int ThisYear = 2004;

The code above shows both kinds of constants at the class or struct scope.
Compile-time constants can also be declared inside methods. Read-only 
constants cannot be declared with method scope.

The differences in the behavior of compile-time and runtime constants 
follow from how they are accessed. A compile-time constant is replaced 
with the value of that constant in your object code. This construct:

if (myDateTime.Year == Millennium)

compiles to the same IL as if you had written this:

if (myDateTime.Year == 2000)

Runtime constants are evaluated at runtime. The IL generated when you 
reference a read-only constant references the readonly variable, not the 
value.

This distinction places several restrictions on when you are allowed to use 
either type of constant. Compile-time constants can be used only for prim-
itive types (built-in integral and floating-point types), enums, or strings. 
These are the only types that enable you to assign meaningful constant 
values in initializers. These primitive types are the only ones that can be

8 ❘ Chapter 1  C# Language Idioms
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replaced with literal values in the compiler-generated IL. The following 
construct does not compile. You cannot initialize a compile-time constant 
using the new operator, even when the type being initialized is a value type:

// Does not compile, use readonly instead: 

private const DateTime classCreation = new

DateTime(2000, 1, 1, 0, 0, 0);

Compile-time constants are limited to numbers and strings. Read-only 
values are also constants, in that they cannot be modified after the con-
structor has executed. But read-only values are different in that they are 
assigned at runtime. You have much more flexibility in working with run-
time constants. For one thing, runtime constants can be any type. You 
must initialize them in a constructor, or you can use an initializer. You can 
make readonly values of the DateTime structures; you cannot create 
DateTime values with const.

You can use readonly values for instance constants, storing different values 
for each instance of a class type. Compile-time constants are, by defini-
tion, static constants.

The most important distinction is that readonly values are resolved at 
runtime. The IL generated when you reference a readonly constant refer-
ences the readonly variable, not the value. This difference has far-reaching 
implications on maintenance over time. Compile-time constants gener-
ate the same IL as though you’ve used the numeric constants in your code, 
even across assemblies: A constant in one assembly is still replaced with 
the value when used in another assembly.

The way in which compile-time and runtime constants are evaluated 
affects runtime compatibility. Suppose you have defined both const and
readonly fields in an assembly named Infrastructure:

public class UsefulValues 

{

public static readonly int StartValue = 5; 

public const int EndValue = 10;

}

In another assembly, you reference these values:

for (int i = UsefulValues.StartValue; 

i < UsefulValues.EndValue; i++) 

Console.WriteLine("value is {0}", i);
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If you run your little test, you see the following obvious output:

Value is 5 

Value is 6 

...

Value is 9

Time passes, and you release a new version of the Infrastructure assembly 
with the following changes:

public class UsefulValues 

{

public static readonly int StartValue = 105; 

public const int EndValue = 120;

}

You distribute the Infrastructure assembly without rebuilding your Appli-
cation assembly. You expect to get this:

Value is 105 

Value is 106 

...

Value is 119

In fact, you get no output at all. The loop now uses the value 105 for its 
start and 10 for its end condition. The C# compiler placed the const value
of 10 into the Application assembly instead of a reference to the storage 
used by EndValue. Contrast that with the StartValue value. It was declared 
as readonly: It gets resolved at runtime. Therefore, the Application assem-
bly makes use of the new value without even recompiling the Application 
assembly; simply installing an updated version of the Infrastructure assem-
bly is enough to change the behavior of all clients using that value. Updat-
ing the value of a public constant should be viewed as an interface change. 
You must recompile all code that references that constant. Updating the 
value of a read-only constant is an implementation change; it is binary 
compatible with existing client code.

On the other hand, sometimes you really mean for a value to be deter-
mined at compile time. For example, consider a set of constants to mark 
different versions of an object in its serialized form (see Item 27). Persist-
ent values that mark specific versions should be compile-time constants; 
they never change. The current version should be a runtime constant, 
changing with each release.
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private const int Version1_0 = 0x0100; 

private const int Version1_1 = 0x0101; 

private const int Version1_2 = 0x0102; 

// major release: 

private const int Version2_0 = 0x0200;

// check for the current version: 

private static readonly int CurrentVersion =

Version2_0;

You use the runtime version to store the current version in each saved file:

// Read from persistent storage, check 

// stored version against compile-time constant: 

protected MyType(SerializationInfo info,

StreamingContext cntxt) 

{

int storedVersion = info.GetInt32("VERSION"); 

switch (storedVersion) 

{

case Version2_0: 

readVersion2(info, cntxt); 

break;

case Version1_1: 

readVersion1Dot1(info, cntxt); 

break;

// etc. 

}

}

// Write the current version: 

[SecurityPermissionAttribute(SecurityAction.Demand,

SerializationFormatter = true)] 

void ISerializable.GetObjectData(SerializationInfo inf,

StreamingContext cxt) 

{

// use runtime constant for current version: 

inf.AddValue("VERSION", CurrentVersion);

// write remaining elements... 

}
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The final advantage of using const over readonly is performance: Known 
constant values can generate slightly more efficient code than the variable 
accesses necessary for readonly values. However, any gains are slight and 
should be weighed against the decreased flexibility. Be sure to profile per-
formance differences before giving up the flexibility.

You’ll encounter similar tradeoffs between runtime and compile-time pro-
cessing of constant values when you use named and optional parameters. 
The default values for optional parameters are placed in the call site just 
like the default value for compile-time constants (those declared with
const). Like working with readonly and const values, you’ll want to be 
careful with changes to the values of optional parameters. (See Item 10.)

const must be used when the value must be available at compile time: 
attribute parameters and enum definitions, and those rare times when you 
mean to define a value that does not change from release to release. For 
everything else, prefer the increased flexibility of readonly constants.

Item 3: Prefer the is or as Operators to Casts

By embracing C#, you’ve embraced strong typing. That is almost always a 
good thing. Strong typing means you expect the compiler to find type mis-
matches in your code. That also means your applications do not need to 
perform as much type checking at runtime. But sometimes, runtime type 
checking is unavoidable. There will be times in C# when you write func-
tions that take object parameters because the framework defines the 
method signature for you. You likely need to attempt to cast those objects 
to other types, either classes or interfaces. You’ve got two choices: Use the
as operator or force the compiler to bend to your will using a cast. You 
also have a defensive variant: You can test a conversion with is and then 
use as or casts to convert it.

The correct choice is to use the as operator whenever you can because it 
is safer than blindly casting and is more efficient at runtime. The as and
is operators do not perform any user-defined conversions. They succeed 
only if the runtime type matches the sought type; they never construct a 
new object to satisfy a request.

Take a look at an example. You write a piece of code that needs to convert 
an arbitrary object into an instance of MyType. You could write it this way:
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object o = Factory.GetObject();

// Version one:

MyType t = o as MyType;

if (t != null) 

{

// work with t, it's a MyType. 

} 

else 

{

// report the failure. 

}

Or, you could write this:

object o = Factory.GetObject();

// Version two: 

try 

{

MyType t; 

t = (MyType)o; 

// work with T, it's a MyType.

} 

catch (InvalidCastException) 

{

// report the conversion failure. 

}

You’ll agree that the first version is simpler and easier to read. It does not 
have the try/catch clause, so you avoid both the overhead and the code. 
Notice that the cast version must check null in addition to catching excep-
tions. null can be converted to any reference type using a cast, but the as
operator returns null when used on a null reference. So, with casts, you 
need to check null and catch exceptions. Using as, you simply check the 
returned reference against null.

The biggest difference between the as operator and the cast operator is 
how user-defined conversions are treated. The as and is operators exam-
ine the runtime type of the object being converted; they do not perform 
any other operations. If a particular object is not the requested type or is
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derived from the requested type, they fail. Casts, on the other hand, can use 
conversion operators to convert an object to the requested type. This 
includes any built-in numeric conversions. Casting a long to a short can 
lose information.

The same problems are lurking when you cast user-defined types. Con-
sider this type:

public class SecondType 

{

private MyType _value;

// other details elided 

// Conversion operator. 

// This converts a SecondType to 

// a MyType, see item 9. 

public static implicit operator

MyType(SecondType t) 

{

return t._value; 

}

}

Suppose an object of SecondType is returned by the Factory.GetObject() 
function in the first code snippet:

object o = Factory.GetObject();

// o is a SecondType:

MyType t = o as MyType; // Fails. o is not MyType

if (t != null) 

{

// work with t, it's a MyType. 

} 

else 

{

// report the failure. 

}
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// Version two: 

try 

{

MyType t1; 

t1 = (MyType)o; // Fails. o is not MyType 

// work with t1, it's a MyType.

} 

catch (InvalidCastException) 

{

// report the conversion failure. 

}

Both versions fail. But I told you that casts will perform user-defined con-
versions. You’d think the cast would succeed. You’re right—it should suc-
ceed if you think that way. But it fails because your compiler is generating 
code based on the compile-time type of the object, o. The compiler knows 
nothing about the runtime type of o; it views o as an instance of object.
The compiler sees that there is no user-defined conversion from object to
MyType. It checks the definitions of object and MyType. Lacking any 
user-defined conversion, the compiler generates the code to examine the 
runtime type of o and checks whether that type is a MyType. Because o is 
a SecondType object, that fails. The compiler does not check to see whether 
the actual runtime type of o can be converted to a MyType object.

You could make the conversion from SecondType to MyType succeed if 
you wrote the code snippet like this:

object o = Factory.GetObject();

// Version three:

SecondType st = o as SecondType; 

try 

{

MyType t; 

t = (MyType)st; 

// work with T, it's a MyType.

} 

catch (InvalidCastException) 

{

// report the failure. 

}
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You should never write this ugly code, but it does illustrate a common 
problem. Although you would never write this, you can use an object
parameter to a function that expects the proper conversions:

object o = Factory.GetObject(); 

DoStuffWithObject(o);

private static void DoStuffWithObject(object o) 

{

try 

{

MyType t; 

t = (MyType)o; // Fails. o is not MyType 

// work with T, it's a MyType.

} 

catch (InvalidCastException) 

{

// report the conversion failure. 

}

}

Remember that user-defined conversion operators operate only on the 
compile-time type of an object, not on the runtime type. It does not mat-
ter that a conversion between the runtime type of o and MyType exists. 
The compiler just doesn’t know or care. This statement has different 
behavior, depending on the declared type of st:

t = (MyType)st;

This next statement returns the same result, no matter what the declared 
type of st is. So, you should prefer as to casts—it’s more consistent. In fact, 
if the types are not related by inheritance, but a user-defined conversion 
operator exists, the following statement will generate a compiler error:

t = st as MyType;

Now that you know to use as when possible, let’s discuss when you can’t 
use it. The as operator does not work on value types. This statement won’t 
compile:

object o = Factory.GetValue(); 

int i = o as int; // Does not compile.
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That’s because ints are value types and can never be null. What value of
int should be stored in i if o is not an integer? Any value you pick might 
also be a valid integer. Therefore, as can’t be used. You’re stuck using the 
cast syntax. It’s actually a boxing/unboxing conversion (see Item 45):

object o = Factory.GetValue(); 

int i = 0; 

try 

{

i = (int)o; 

} 

catch (InvalidCastException) 

{

i = 0; 

}

Using exceptions as a flow control mechanism should strike you as a ter-
rible practice. (See Item 47.) But you’re not stuck with the behaviors of 
casts. You can use the is statement to remove the chance of exceptions or 
conversions:

object o = Factory.GetValue(); 

int i = 0; 

if (o is int)

i = (int)o;

If o is some other type that can be converted to an int, such as a double, 
the is operator returns false. The is operator always returns false for null 
arguments.

The is operator should be used only when you cannot convert the type 
using as. Otherwise, it’s simply redundant:

// correct, but redundant: 

object o = Factory.GetObject();

MyType t = null; 

if (o is MyType)

t = o as MyType;

The previous code is the same as if you had written the following:

// correct, but redundant: 

object o = Factory.GetObject();
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MyType t = null; 

if (o is MyType)

t = o as MyType;

That’s inefficient and redundant. If you’re about to convert a type using
as, the is check is simply not necessary. Check the return from as against 
null; it’s simpler.

Now that you know the difference among is, as, and casts, which opera-
tor do you suppose the foreach loop uses? Foreach loops can operate on 
nongeneric IEnumerable sequences and have the type coercion built into 
the iteration. (You should prefer the type-safe generic versions whenever 
possible. The nongeneric version exists for historical purposes, and to sup-
port some late binding scenarios.)

public void UseCollection(IEnumerable theCollection) 

{

foreach (MyType t in theCollection)

t.DoStuff( ); 

}

foreach uses a cast operation to perform conversions from an object to 
the type used in the loop. The code generated by the foreach statement
roughly equates to this hand-coded version:

public void UseCollectionV2(IEnumerable theCollection) 

{

IEnumerator it = theCollection.GetEnumerator(); 

while (it.MoveNext()) 

{

MyType t = (MyType)it.Current;

t.DoStuff(); 

}

}

foreach needs to use casts to support both value types and reference 
types. By choosing the cast operator, the foreach statement exhibits the 
same behavior, no matter what the destination type is. However, because 
a cast is used, foreach loops can cause an InvalidCastException to be 
thrown.

Because IEnumerator.Current returns a System.Object, which has no con-
version operators, none is eligible for this test. A collection of SecondType 
objects cannot be used in the previous UseCollection() function because
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the conversion fails, as you already saw. The foreach statement (which 
uses a cast) does not examine the casts that are available in the runtime type 
of the objects in the collection. It examines only the conversions available 
in the System.Object class (the type returned by IEnumerator.Current) 
and the declared type of the loop variable (in this case, MyType).

Finally, sometimes you want to know the exact type of an object, not just 
whether the current type can be converted to a target type. The is opera-
tor returns true for any type derived from the target type. The GetType() 
method gets the runtime type of an object. It is a more strict test than the
is or as statement provides. GetType() returns the type of the object and 
can be compared to a specific type.

Consider this function again:

public void UseCollectionV3(IEnumerable theCollection) 

{

foreach (MyType t in theCollection)

t.DoStuff(); 

}

If you made a NewType class derived from MyType, a collection of NewType 
objects would work just fine in the UseCollection function:

public class NewType : MyType 

{

// contents elided. 

}

If you mean to write a function that works with all objects that are 
instances of MyType, that’s fine. If you mean to write a function that works 
only with MyType objects exactly, you should use the exact type for com-
parison. Here, you would do that inside the foreach loop. The most com-
mon time when the exact runtime type is important is when doing 
equality tests (see Item 6). In most other comparisons, the .isinst com-
parisons provided by as and is are semantically correct.

The .NET Base Class Library (BCL) contains a method for converting ele-
ments in a sequence using the same type of operations: Enumerable 
.Cast<T>() converts each element in a sequence that supports the classic 
IEnumerable interface:

IEnumerable collection = new List<int>() 

{1,2,3,4,5,6,7,8,9,10};
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var small = from int item in collection 

where item < 5 

select item;

var small2 = collection.Cast<int>().Where(item => item < 5). 

Select(n => n);

The query generates the same method calls as the last line of code above. 
In both cases, the Cast<T> method converts each item in the sequence to 
the target type. The Enumerable.Cast<T> method uses an old style cast 
rather than the as operator. Using the old style cast means that Cast<T> 
does not need to have a class constraint. Using the as operator would be 
limiting, and rather than implement different Cast<T> methods, the BCL 
team chose to create a single method using the old style cast operator. It’s 
a tradeoff you should consider in your code as well. On those occasions 
where you need to convert an object that is one of the generic type param-
eters, you’ll need to weigh the necessity of a class constraint against the 
different behavior of using the cast operator.

In C# 4.0, the type system can be circumvented even more by using 
dynamic and runtime type checking. That’s the subject of Chapter 5, 
“Dynamic Programming in C#.” There are quite a few ways to treat objects 
based on expectations of known behavior rather than knowing anything 
about a particular type or interface supplied. You’ll learn about when to 
use those techniques and when to avoid them.

Good object-oriented practice says that you should avoid converting types, 
but sometimes there are no alternatives. If you can’t avoid the conversions, 
use the language’s as and is operators to express your intent more clearly. 
Different ways of coercing types have different rules. The is and as oper-
ators are almost always the correct semantics, and they succeed only when 
the object being tested is the correct type. Prefer those statements to cast 
operators, which can have unintended side effects and succeed or fail when 
you least expect it.

Item 4: Use Conditional Attributes Instead of #if

#if/#endif blocks have been used to produce different builds from the 
same source, most often debug and release variants. But these have never 
been a tool we were happy to use. #if/#endif blocks are too easily abused, 
creating code that is hard to understand and harder to debug. Language
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designers have responded by creating better tools to produce different 
machine code for different environments. C# has added the Conditional 
attribute to indicate whether a method should be called based on an envi-
ronment setting. It’s a cleaner way to describe conditional compilation 
than #if/#endif. The compiler understands the Conditional attribute, 
so it can do a better job of verifying code when conditional attributes are 
applied. The conditional attribute is applied at the method level, so it 
forces you to separate conditional code into distinct methods. Use the 
Conditional attribute instead of #if/#endif blocks when you create con-
ditional code blocks.

Most veteran programmers have used conditional compilation to check 
pre- and post-conditions in an object. You would write a private method 
to check all the class and object invariants. That method would be condi-
tionally compiled so that it appeared only in your debug builds.

private void CheckStateBad() 

{

// The Old way: 

#if DEBUG

Trace.WriteLine("Entering CheckState for Person");

// Grab the name of the calling routine: 

string methodName =

new StackTrace().GetFrame(1).GetMethod().Name;

Debug.Assert(lastName != null, 

methodName, 

"Last Name cannot be null");

Debug.Assert(lastName.Length > 0, 

methodName, 

"Last Name cannot be blank");

Debug.Assert(firstName != null, 

methodName, 

"First Name cannot be null");

Debug.Assert(firstName.Length > 0, 

methodName, 

"First Name cannot be blank");
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Trace.WriteLine("Exiting CheckState for Person"); 

#endif 

}

Using the #if and #endif pragmas, you’ve created an empty method in 
your release builds. The CheckState() method gets called in all builds, 
release and debug. It doesn’t do anything in the release builds, but you pay 
for the method call. You also pay a small cost to load and JIT the empty 
routine.

This practice works fine but can lead to subtle bugs that appear only in 
release builds. The following common mistake shows what can happen 
when you use pragmas for conditional compilation:

public void Func() 

{

string msg = null;

#if DEBUG 

msg = GetDiagnostics();

#endif

Console.WriteLine(msg); 

}

Everything works fine in your debug build, but your release builds happily 
print a blank message. That’s not your intent. You goofed, but the compiler 
couldn’t help you. You have code that is fundamental to your logic inside 
a conditional block. Sprinkling your source code with #if/#endif blocks
makes it hard to diagnose the differences in behavior with the different 
builds.

C# has a better alternative: the Conditional attribute. Using the Condi-
tional attribute, you can isolate functions that should be part of your 
classes only when a particular environment variable is defined or set to a 
certain value. The most common use of this feature is to instrument your 
code with debugging statements. The .NET Framework library already has 
the basic functionality you need for this use. This example shows how to 
use the debugging capabilities in the .NET Framework Library, to show 
you how conditional attributes work and when to add them to your code.

When you build the Person object, you add a method to verify the object 
invariants:
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private void CheckState() 

{

// Grab the name of the calling routine: 

string methodName =

new StackTrace().GetFrame(1).GetMethod().Name;

Trace.WriteLine("Entering CheckState for Person:"); 

Trace.Write("\tcalled by "); 

Trace.WriteLine(methodName);

Debug.Assert(lastName != null, 

methodName, 

"Last Name cannot be null");

Debug.Assert(lastName.Length > 0, 

methodName, 

"Last Name cannot be blank");

Debug.Assert(firstName != null, 

methodName, 

"First Name cannot be null");

Debug.Assert(firstName.Length > 0, 

methodName, 

"First Name cannot be blank");

Trace.WriteLine("Exiting CheckState for Person"); 

}

You might not have encountered many library functions in this method, 
so let’s go over them briefly. The StackTrace class gets the name of the call-
ing method using Reflection. It’s rather expensive, but it greatly simplifies 
tasks, such as generating information about program flow. Here, it deter-
mines the name of the method called CheckState. There is a minor risk 
here if the calling method is inlined, but the alternative is to have each 
method that calls CheckState() pass in the method name using Method-
Base.GetCurrentMethod(). You’ll see shortly why I decided against that 
strategy.

The remaining methods are part of the System.Diagnostics.Debug class 
or the System.Diagnostics.Trace class. The Debug.Assert method tests a
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condition and stops the program if that condition is false. The remaining 
parameters define messages that will be printed if the condition is false. 
Trace.WriteLine writes diagnostic messages to the debug console. So, this 
method writes messages and stops the program if a person object is invalid. 
You would call this method in all your public methods and properties as 
a precondition and a post-condition:

public string LastName 

{

get 

{

CheckState(); 

return lastName;

} 

set 

{

CheckState(); 

lastName = value; 

CheckState();

} 

}

CheckState fires an assert the first time someone tries to set the last name 
to the empty string, or null. Then you fix your set accessor to check the 
parameter used for LastName. It’s doing just what you want.

But this extra checking in each public routine takes time. You’ll want to 
include this extra checking only when creating debug builds. That’s where 
the Conditional attribute comes in:

[Conditional("DEBUG")] 

private void CheckState() 

{

// same code as above 

}

The Conditional attribute tells the C# compiler that this method should be 
called only when the compiler detects the DEBUG environment variable. 
The Conditional attribute does not affect the code generated for the 
CheckState() function; it modifies the calls to the function. If the DEBUG 
symbol is defined, you get this:
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public string LastName 

{

get 

{

CheckState(); 

return lastName;

} 

set 

{

CheckState(); 

lastName = value; 

CheckState();

} 

}

If not, you get this:

public string LastName 

{

get 

{

return lastName; 

} 

set 

{

lastName = value; 

}

}

The body of the CheckState() function is the same, regardless of the state 
of the environment variable. This is one example of why you need to 
understand the distinction made between the compilation and JIT steps in 
.NET. Whether the DEBUG environment variable is defined or not, the 
CheckState() method is compiled and delivered with the assembly. That 
might seem inefficient, but the only cost is disk space. The CheckState() 
function does not get loaded into memory and JITed unless it is called. Its 
presence in the assembly file is immaterial. This strategy increases flexi-
bility and does so with minimal performance costs. You can get a deeper 
understanding by looking at the Debug class in the .NET Framework. On 
any machine with the .NET Framework installed, the System.dll assembly 
does have all the code for all the methods in the Debug class. Environment
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variables control whether they get called when callers are compiled. Using 
the Conditional directive enables you to create libraries with debugging 
features embedded. Those features can be enabled or disabled at runtime.

You can also create methods that depend on more than one environment 
variable. When you apply multiple conditional attributes, they are com-
bined with OR. For example, this version of CheckState would be called 
when either DEBUG or TRACE is true:

[Conditional("DEBUG"),

Conditional("TRACE")] 

private void CheckState()

To create a construct using AND, you need to define the preprocessor sym-
bol yourself using preprocessor directives in your source code:

#if ( VAR1 && VAR2 ) 

#define BOTH 

#endif

Yes, to create a conditional routine that relies on the presence of more than 
one environment variable, you must fall back on your old practice of #if.
All #if does is create a new symbol for you. But avoid putting any exe-
cutable code inside that pragma.

Then, you could write the old version of CheckState this way:

private void CheckStateBad() 

{

// The Old way: 

#if BOTH

Trace.WriteLine("Entering CheckState for Person");

// Grab the name of the calling routine: 

string methodName =

new StackTrace().GetFrame(1).GetMethod().Name;

Debug.Assert(lastName != null, 

methodName, 

"Last Name cannot be null");

Debug.Assert(lastName.Length > 0, 

methodName, 

"Last Name cannot be blank");
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Debug.Assert(firstName != null, 

methodName, 

"First Name cannot be null");

Debug.Assert(firstName.Length > 0, 

methodName, 

"First Name cannot be blank");

Trace.WriteLine("Exiting CheckState for Person"); 

#endif 

}

The Conditional attribute can be applied only to entire methods. In addi-
tion, any method with a Conditional attribute must have a return type of 
void. You cannot use the Conditional attribute for blocks of code inside 
methods or with methods that return values. Instead, create carefully con-
structed conditional methods and isolate the conditional behavior to those 
functions. You still need to review those conditional methods for side 
effects to the object state, but the Conditional attribute localizes those 
points much better than #if/#endif. With #if and #endif blocks, you
can mistakenly remove important method calls or assignments.

The previous examples use the predefined DEBUG or TRACE symbols. 
But you can extend this technique for any symbols you define. The Con-
ditional attribute can be controlled by symbols defined in a variety of ways. 
You can define symbols from the compiler command line, from environ-
ment variables in the operating system shell, or from pragmas in the source 
code.

You may have noticed that every method shown with the Conditional 
attribute has been a method that has a void return type and takes no 
parameters. That’s a practice you should follow. The compiler enforces 
that conditional methods must have the void return type. However, you 
could create a method that takes any number of reference type parameters. 
That can lead to practices where an important side effect does not take 
place. Consider this snippet of code:

Queue<string> names = new Queue<string>(); 

names.Enqueue("one"); 

names.Enqueue("two"); 

names.Enqueue("three");
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string item = string.Empty; 

SomeMethod(item = names.Dequeue()); 

Console.WriteLine(item);

SomeMethod has been created with a Conditional attribute attached:

[Conditional("DEBUG")] 

private static void SomeMethod(string param) 

{

}

That’s going to cause very subtle bugs. The call to SomeMethod() only 
happens when the DEBUG symbol is defined. If not, that call doesn’t hap-
pen. Neither does the call to names.Dequeue(). Because the result is not 
needed, the method is not called. Any method marked with the Condi-
tional attribute should not take any parameters. The user could use a 
method call with side effects to generate those parameters. Those method 
calls will not take place if the condition is not true.

The Conditional attribute generates more efficient IL than #if/#endif
does. It also has the advantage of being applicable only at the function 
level, which forces you to better structure your conditional code. The com-
piler uses the Conditional attribute to help you avoid the common errors 
we’ve all made by placing the #if or #endif in the wrong spot. The Con-
ditional attribute provides better support for you to cleanly separate
 conditional code than the preprocessor did.

Item 5: Always Provide ToString()

System.Object.ToString() is one of the most-used methods in the .NET 
environment. You should write a reasonable version for all the clients of 
your class. Otherwise, you force every user of your class to use the prop-
erties in your class and create a reasonable human-readable representa-
tion. This string representation of your type can be used to easily display 
information about an object to users: in Windows Presentation Founda-
tion (WPF) controls, Silverlight controls, Web Forms, or console output. 
The string representation can also be useful for debugging. Every type that 
you create should provide a reasonable override of this method. When you 
create more complicated types, you should implement the more sophisti-
cated IFormattable.ToString(). Face it: If you don’t override this routine, 
or if you write a poor one, your clients are forced to fix it for you.
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The System.Object version returns the fully qualified name of the type. 
It’s useless information: "System.Drawing.Rect", "MyNamespace.Point", 
"SomeSample.Size" is not what you want to display to your users. But that’s 
what you get when you don’t override ToString() in your classes. You write 
a class once, but your clients use it many times. A little more work when 
you write the class pays off every time you or someone else uses it.

Let’s consider the simplest requirement: overriding System.Object.ToString(). 
Every type you create should override ToString() to provide the most com-
mon textual representation of the type. Consider a Customer class with 
three public properties:

public class Customer 

{

public string Name 

{

get; 

set;

} 

public decimal Revenue 

{

get; 

set;

} 

public string ContactPhone 

{

get; 

set;

}

public override string ToString() 

{

return Name; 

}

}

The inherited version of Object.ToString() returns "Customer". That is 
never useful to anyone. Even if ToString() will be used only for debugging 
purposes, it should be more sophisticated than that. Your override of 
Object.ToString() should return the textual representation most likely to 
be used by clients of that class. In the Customer example, that’s the name:
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public override string ToString() 

{

return Name; 

}

If you don’t follow any of the other recommendations in this item, follow 
that exercise for all the types you define. It will save everyone time imme-
diately. When you provide a reasonable implementation for the Object 
.ToString() method, objects of this class can be more easily added to WPF 
controls, Silverlight controls, Web Form controls, or printed output. The 
.NET BCL uses the override of Object.ToString() to display objects in any 
of the controls: combo boxes, list boxes, text boxes, and other controls. If 
you create a list of customer objects in a Windows Form or a Web Form, 
you get the name displayed as the text System.Console.WriteLine() and 
System.String.Format() as well as ToString() internally. Anytime the .NET 
BCL wants to get the string representation of a customer, your customer 
type supplies that customer’s name. One simple three-line method handles 
all those basic requirements.

In C# 3.0, the compiler creates a default ToString() for all anonymous 
types. The generated ToString() method displays the value of each scalar 
property. Properties that represent sequences are LINQ query results and 
will display their type information instead of each value. This snippet of 
code:

int[] list = new int[] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }; 

var test = new { Name = "Me",

Numbers = from l in list select l }; 

Console.WriteLine(test);

will display:

{ Name = Me, Numbers = 

System.Linq.Enumerable+WhereSelectArrayIterator`2 

[System.Int32,System.Int32] }

Even compiler-created anonymous types display a better output than your 
user-defined types unless you override ToString(). You should do a better 
job of supporting your users than the compiler does for a temporary type 
with a scope of one method.

This one simple method, ToString(), satisfies many of the requirements 
for displaying user-defined types as text. But sometimes, you need more.
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The previous customer type has three fields: the name, the revenue, and a 
contact phone. The System.ToString() override uses only the name. You 
can address that deficiency by implementing the IFormattable interface 
on your type. IFormattable contains an overloaded ToString() method that 
lets you specify formatting information for your type. It’s the interface you 
use when you need to create different forms of string output. The cus-
tomer class is one of those instances. Users will want to create a report that 
contains the customer name and last year’s revenue in a tabular format. 
The IFormattable.ToString() method provides the means for you to let 
users format string output from your type. The IFormattable.ToString() 
method signature contains a format string and a format provider:

string System.IFormattable.ToString(string format, 

IFormatProvider formatProvider)

You can use the format string to specify your own formats for the types 
you create. You can specify your own key characters for the format strings. 
In the customer example, you could specify n to mean the name, r for the 
revenue, and p for the phone. By allowing the user to specify combina-
tions as well, you would create this version of IFormattable.ToString():

// supported formats: 

// substitute n for name. 

// substitute r for revenue 

// substitute p for contact phone. 

// Combos are supported:  nr, np, npr, etc 

// "G" is general. 

string System.IFormattable.ToString(string format,

IFormatProvider formatProvider) 

{

if (formatProvider != null) 

{

ICustomFormatter fmt = formatProvider.GetFormat( 

this.GetType()) 

as ICustomFormatter;

if (fmt != null) 

return fmt.Format(format, this, formatProvider);

}

switch (format) 

{
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case "r": 

return Revenue.ToString();

case "p": 

return ContactPhone;

case "nr": 

return string.Format("{0,20}, {1,10:C}",

Name, Revenue); 

case "np":

return string.Format("{0,20}, {1,15}",

Name, ContactPhone); 

case "pr":

return string.Format("{0,15}, {1,10:C}",

ContactPhone, Revenue); 

case "pn":

return string.Format("{0,15}, {1,20}",

ContactPhone, Name); 

case "rn":

return string.Format("{0,10:C}, {1,20}",

Revenue, Name); 

case "rp":

return string.Format("{0,10:C}, {1,20}",

Revenue, ContactPhone); 

case "nrp":

return string.Format("{0,20}, {1,10:C}, {2,15}",

Name, Revenue, ContactPhone); 

case "npr":

return string.Format("{0,20}, {1,15}, {2,10:C}",

Name, ContactPhone, Revenue); 

case "pnr":

return string.Format("{0,15}, {1,20}, {2,10:C}",

ContactPhone, Name, Revenue); 

case "prn":

return string.Format("{0,15}, {1,10:C}, {2,15}",

ContactPhone, Revenue, Name); 

case "rpn":

return string.Format("{0,10:C}, {1,15}, {2,20}",

Revenue, ContactPhone, Name); 

case "rnp":

return string.Format("{0,10:C}, {1,20}, {2,15}", 

Revenue, Name, ContactPhone);
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case "n": 

case "G": 

default:

return Name; 

}

}

Adding this function gives your clients the capability to specify the pres-
entation of their customer data:

IFormattable c1 = new Customer(); 

Console.WriteLine("Customer record: {0}",

c1.ToString("nrp", null));

Any implementation of IFormattable.ToString() is specific to the type, but 
you must handle certain cases whenever you implement the IFormattable 
interface. First, you must support the general format, "G". Second, you 
must support the empty format in both variations: "" and null. All three 
format specifiers must return the same string as your override of the 
Object.ToString() method. The .NET Base Class Library (BCL) calls 
IFormattable.ToString() instead of Object.ToString() for every type that 
implements IFormattable. The .NET BCL usually calls IFormattable. 
ToString() with a null format string, but a few locations use the "G" format 
string to indicate the general format. If you add support for the IFormattable 
interface and do not support these standard formats, you’ve broken the 
automatic string conversions in the BCL. You can see that supporting
 IFormattable can quickly get out of hand. You can’t anticipate all the pos-
sible format options that your type might support. At most, pick a few of 
the most likely formats. Client code should make up all the edge cases.

The second parameter to IFormattable.ToString() is an object that imple-
ments the IFormatProvider interface. This object lets clients provide for-
matting options that you did not anticipate. If you look at the previous 
implementation of IFormattable.ToString(), you will undoubtedly come 
up with any number of format options that you would like but that you 
find lacking. That’s the nature of providing human-readable output. No 
matter how many different formats you support, your users will one day 
want some format that you did not anticipate. That’s why the first few lines 
of the method look for an object that implements IFormatProvider and 
delegate the job to its ICustomFormatter.

Shift your focus now from class author to class consumer. You find that 
you want a format that is not supported. For example, you have customers
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whose names are longer than 20 characters, and you want to modify the 
format to provide a 50-character width for the customer name. That’s why 
the IFormatProvider interface is there. You create a class that implements 
IFormatProvider and a companion class that implements ICustomFormatter 
to create your custom output formats. The IFormatProvider interface 
defines one method: GetFormat(). GetFormat() returns an object that 
implements the ICustomFormatter interface. The ICustomFormatter inter-
face specifies the method that does the actual formatting. The following 
pair creates modified output that uses 50 columns for the customer name:

// Example IFormatProvider: 

public class CustomFormatter : IFormatProvider 

{

#region IFormatProvider Members 

// IFormatProvider contains one method. 

// This method returns an object that 

// formats using the requested interface. 

// Typically, only the ICustomFormatter 

// is implemented 

public object GetFormat(Type formatType) 

{

if (formatType == typeof(ICustomFormatter)) 

return new CustomerFormatProvider();

return null; 

} 

#endregion

// Nested class to provide the 

// custom formatting for the Customer class. 

private class CustomerFormatProvider : ICustomFormatter 

{

#region ICustomFormatter Members 

public string Format(string format, object arg,

IFormatProvider formatProvider) 

{

Customer c = arg as Customer; 

if (c == null)

return arg.ToString(); 

return string.Format("{0,50}, {1,15}, {2,10:C}",

c.Name, c.ContactPhone, c.Revenue); 

}
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#endregion 

}

}

The GetFormat() method creates the object that implements the 
ICustomFormatter interface. The ICustomFormatter.Format() method 
does the actual work of formatting the output in the requested manner. 
That one method translates the object into a string format. You can define 
the format strings for ICustomFormatter.Format() so that you can spec-
ify multiple formats in one routine. The FormatProvider will be the
 IFormatProvider object from the GetFormat() method.

To specify your custom format, you need to explicitly call string.Format() 
with the IFormatProvider object:

Console.WriteLine(string.Format(new CustomFormatter(), 

"", c1));

You can create IFormatProvider and ICustomFormatter implementations 
for classes whether or not the class implemented the IFormattable inter-
face. So, even if the class author didn’t provide reasonable ToString() 
behavior, you can make your own. Of course, from outside the class, you 
have access to only the public properties and data members to construct 
your strings. Writing two classes, IFormatProvider and ICustomFormatter, 
is a lot of work just to get text output. But implementing your specific text 
output using this form means that it is supported everywhere in the .NET 
Framework.

So now step back into the role of class author again. Overriding 
Object.ToString() is the simplest way to provide a string representation of 
your classes. You should provide that every time you create a type. It should 
be the most obvious, most common representation of your type. It must 
not be too verbose. It may end up in controls, HTML pages, or other 
human-readable locations. On those rare occasions when your type is 
expected to provide more sophisticated output, you should take advan-
tage of implementing the IFormattable interface. It provides the standard 
way for users of your class to customize the text output for your type. If 
you leave these out, your users are left with implementing custom for-
matters. Those solutions require more code, and because users are outside 
of your class, they cannot examine the internal state of the object. But of 
course, publishers cannot anticipate all potential formats.
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Eventually, people consume the information in your types. People under-
stand text output, so you want to provide it in the simplest fashion possi-
ble: Override ToString() in all your types. Make the ToString() output 
short and reasonable.

Item 6: Understand the Relationships Among the Many 
Different Concepts of Equality

When you create your own types (either classes or structs), you define
what equality means for that type. C# provides four different functions 
that determine whether two different objects are “equal”:

public static bool ReferenceEquals 

(object left, object right);

public static bool Equals 

(object left, object right);

public virtual bool Equals(object right); 

public static bool operator ==(MyClass left, MyClass right);

The language enables you to create your own versions of all four of these 
methods. But just because you can doesn’t mean that you should. You 
should never redefine the first two static functions. You’ll often create your 
own instance Equals() method to define the semantics of your type, and 
you’ll occasionally override operator==(), typically for performance rea-
sons in value types. Furthermore, there are relationships among these four 
functions, so when you change one, you can affect the behavior of the oth-
ers. Yes, needing four functions to test equality is complicated. But don’t 
worry—you can simplify it.

Of course, those four methods are not the only options for equality. Types 
that override Equals() should implement IEquatable<T>. Types that 
implement value semantics should implement the IStructuralEquality 
interface. That means six different ways to express equality.

Like so many of the complicated elements in C#, this one follows from the 
fact that C# enables you to create both value types and reference types. 
Two variables of a reference type are equal if they refer to the same object, 
referred to as object identity. Two variables of a value type are equal if they 
are the same type and they contain the same contents. That’s why equal-
ity tests need so many different methods.
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Let’s start with the two functions you should never change. Object 
.ReferenceEquals() returns true if two variables refer to the same object— 
that is, the two variables have the same object identity. Whether the types 
being compared are reference types or value types, this method always tests 
object identity, not object contents. Yes, that means that ReferenceEquals() 
always returns false when you use it to test equality for value types. Even 
when you compare a value type to itself, ReferenceEquals() returns false. 
This is due to boxing, which is covered in Item 45.

int i = 5; 

int j = 5; 

if (Object.ReferenceEquals(i, j))

Console.WriteLine("Never happens."); 

else

Console.WriteLine("Always happens.");

if (Object.ReferenceEquals(i, i))

Console.WriteLine("Never happens."); 

else

Console.WriteLine("Always happens.");

You’ll never redefine Object.ReferenceEquals() because it does exactly what 
it is supposed to do: tests the object identity of two different variables.

The second function you’ll never redefine is static Object.Equals(). This 
method tests whether two variables are equal when you don’t know the 
runtime type of the two arguments. Remember that System.Object is the 
ultimate base class for everything in C#. Anytime you compare two vari-
ables, they are instances of System.Object. Value types and reference types 
are instances of System.Object. So how does this method test the equality 
of two variables, without knowing their type, when equality changes its 
meaning depending on the type? The answer is simple: This method del-
egates that responsibility to one of the types in question. The static 
Object.Equals() method is implemented something like this:

public static new bool Equals(object left, object right) 

{

// Check object identity 

if (Object.ReferenceEquals(left, right) )

return true; 

// both null references handled above
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if (Object.ReferenceEquals(left, null) || 

Object.ReferenceEquals(right, null)) 

return false;

return left.Equals(right); 

}

This example code introduces a method I have not discussed yet: namely, 
the instance Equals() method. I’ll explain that in detail, but I’m not ready 
to end my discussion of the static Equals() just yet. For right now, I want 
you to understand that static Equals() uses the instance Equals() method 
of the left argument to determine whether two objects are equal.

As with ReferenceEquals(), you’ll never overload or redefine your own ver-
sion of the static Object.Equals() method because it already does exactly 
what it needs to do: determines whether two objects are the same when you 
don’t know the runtime type. Because the static Equals() method dele-
gates to the left argument’s instance Equals(), it uses the rules for that type.

Now you understand why you never need to redefine the static Refer-
enceEquals() and static Equals() methods. It’s time to discuss the methods 
you will override. But first, let’s briefly discuss the mathematical proper-
ties of an equality relation. You need to make sure that your definition and 
implementation are consistent with other programmers’ expectations. 
This means that you need to keep in mind the mathematical properties of 
equality: Equality is reflexive, symmetric, and transitive. The reflexive 
property means that any object is equal to itself. No matter what type is 
involved, a == a is always true. The symmetric property means that order 
does not matter: If a == b is true, b == a is also true. If a == b is false, b 
== a is also false. The last property is that if a == b and b == c are both 
true, then a == c must also be true. That’s the transitive property.

Now it’s time to discuss the instance Object.Equals() function, including 
when and how you override it. You create your own instance version of 
Equals() when the default behavior is inconsistent with your type. The 
Object.Equals() method uses object identity to determine whether two 
variables are equal. The default Object.Equals() function behaves exactly 
the same as Object.ReferenceEquals(). But wait—value types are different. 
System.ValueType does override Object.Equals(). Remember that ValueType 
is the base class for all value types that you create (using the struct key-
word). Two variables of a value type are equal if they are the same type 
and they have the same contents. ValueType.Equals() implements that 
behavior. Unfortunately, ValueType.Equals() does not have an efficient
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implementation. ValueType.Equals() is the base class for all value types. 
To provide the correct behavior, it must compare all the member variables 
in any derived type, without knowing the runtime type of the object. In 
C#, that means using reflection. As you’ll see in Item 43, there are many 
disadvantages to reflection, especially when performance is a goal. Equal-
ity is one of those fundamental constructs that gets called frequently in 
programs, so performance is a worthy goal. Under almost all circum-
stances, you can write a much faster override of Equals() for any value 
type. The recommendation for value types is simple: Always create an 
override of ValueType.Equals() whenever you create a value type.

You should override the instance Equals() function only when you want 
to change the defined semantics for a reference type. A number of classes 
in the .NET Framework Class Library use value semantics instead of ref-
erence semantics for equality. Two string objects are equal if they contain 
the same contents. Two DataRowView objects are equal if they refer to the 
same DataRow. The point is that if your type should follow value seman-
tics (comparing contents) instead of reference semantics (comparing 
object identity), you should write your own override of instance 
Object.Equals().

Now that you know when to write your own override of Object.Equals(), 
you must understand how you should implement it. The equality rela-
tionship for value types has many implications for boxing and is discussed 
in Item 45. For reference types, your instance method needs to follow pre-
defined behavior to avoid strange surprises for users of your class. When-
ever you override Equals(), you’ll want to implement IEquatable<T> for 
that type. I’ll explain why a little further into this item. Here is the standard 
pattern for overriding System.Object.Equals. The highlight shows the 
changes to implement IEquatable<T>.

public class Foo : IEquatable<Foo> 

{

public override bool Equals(object right) 

{

// check null: 

// this pointer is never null in C# methods. 

if (object.ReferenceEquals(right, null))

return false;

if (object.ReferenceEquals(this, right)) 

return true;
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// Discussed below. 

if (this.GetType() != right.GetType())

return false;

// Compare this type's contents here:

return this.Equals(right as Foo); 

}

#region IEquatable<Foo> Members

public bool Equals(Foo other) 

{

// elided. 

return true;

} 

#endregion

}

First, Equals() should never throw exceptions—it doesn’t make much 
sense. Two variables are or are not equal; there’s not much room for other 
failures. Just return false for all failure conditions, such as null references 
or the wrong argument types. Now, let’s go through this method in detail 
so you understand why each check is there and why some checks can be left 
out. The first check determines whether the right-side object is null. There 
is no check on this reference. In C#, this is never null. The CLR throws an 
exception before calling any instance method through a null reference. The 
next check determines whether the two object references are the same, test-
ing object identity. It’s a very efficient test, and equal object identity guar-
antees equal contents.

The next check determines whether the two objects being compared are 
the same type. The exact form is important. First, notice that it does not 
assume that this is of type Foo; it calls this.GetType(). The actual type 
might be a class derived from Foo. Second, the code checks the exact type of 
objects being compared. It is not enough to ensure that you can convert the 
right-side parameter to the current type. That test can cause two subtle bugs. 
Consider the following example involving a small inheritance hierarchy:

public class B : IEquatable<B> 

{

public override bool Equals(object right) 

{

// check null:
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if (object.ReferenceEquals(right, null)) 

return false;

// Check reference equality: 

if (object.ReferenceEquals(this, right))

return true;

// Problems here, discussed below. 

B rightAsB = right as B; 

if (rightAsB == null)

return false;

return this.Equals(rightAsB); 

}

#region IEquatable<B> Members

public bool Equals(B other) 

{

// elided 

return true;

}

#endregion 

}

public class D : B, IEquatable<D> 

{

// etc. 

public override bool Equals(object right) 

{

// check null: 

if (object.ReferenceEquals(right, null))

return false;

if (object.ReferenceEquals(this, right)) 

return true;

// Problems here.

D rightAsD = right as D;
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if (rightAsD == null) 

return false;

if (base.Equals(rightAsD) == false) 

return false;

return this.Equals(rightAsD); 

}

#region IEquatable<D> Members 

public bool Equals(D other) 

{

// elided. 

return true; // or false, based on test

} 

#endregion

}

//Test:

B baseObject = new B();

D derivedObject = new D();

// Comparison 1. 

if (baseObject.Equals(derivedObject))

Console.WriteLine("Equals"); 

else

Console.WriteLine("Not Equal");

// Comparison 2. 

if (derivedObject.Equals(baseObject))

Console.WriteLine("Equals"); 

else

Console.WriteLine("Not Equal");

Under any possible circumstances, you would expect to see either Equals 
or Not Equal printed twice. Because of some errors, this is not the case 
with the previous code. The second comparison will never return true. 
The base object, of type B, can never be converted into a D. However, the 
first comparison might evaluate to true. The derived object, of type D, can 
be implicitly converted to a type B. If the B members of the right-side argu-
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ment match the B members of the left-side argument, B.Equals() consid-
ers the objects equal. Even though the two objects are different types, your 
method has considered them equal. You’ve broken the symmetric property 
of Equals. This construct broke because of the automatic conversions that 
take place up and down the inheritance hierarchy.

When you write this, the D object is explicitly converted to a B:

baseObject.Equals(derived)

If baseObject.Equals() determines that the fields defined in its type match, 
the two objects are equal. On the other hand, when you write this, the B 
object cannot be converted to a D object:

derivedObject.Equals(base)

The derivedObject.Equals() method always returns false. If you don’t 
check the object types exactly, you can easily get into this situation, in 
which the order of the comparison matters.

All of the examples above also showed another important practice when 
you override Equals(). Overriding Equals() means that your type should 
implement IEquatable<T>. IEquatable<T> contains one method: 
Equals(T other). Implemented IEquatable<T> means that your type also 
supports a type-safe equality comparison. If you consider that the Equals() 
should return true only in the case where the right-hand side of the equa-
tion is of the same type as the left side, IEquatable<T> simply lets the com-
piler catch numerous occasions where the two objects would be not equal.

There is another practice to follow when you override Equals(). You should 
call the base class only if the base version is not provided by System.Object 
or System.ValueType. The previous code provides an example. Class D 
calls the Equals() method defined in its base class, Class B. However, Class 
B does not call baseObject.Equals(). It calls the version defined in
 System.Object, which returns true only when the two arguments refer to 
the same object. That’s not what you want, or you wouldn’t have written 
your own method in the first place.

The rule is to override Equals() whenever you create a value type, and to 
override Equals() on reference types when you do not want your reference 
type to obey reference semantics, as defined by System.Object. When you 
write your own Equals(), follow the implementation just outlined. Overrid-
ing Equals() means that you should write an override for GetHashCode(). 
See Item 7 for details.
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We’re almost done. operator==() is simple. Anytime you create a value 
type, redefine operator==(). The reason is exactly the same as with the 
instance Equals() function. The default version uses reflection to compare 
the contents of two value types. That’s far less efficient than any imple-
mentation that you would write, so write your own. Follow the recom-
mendations in Item 46 to avoid boxing when you compare value types.

Notice that I didn’t say that you should write operator==() whenever you 
override instance Equals(). I said to write operator==() when you create 
value types. You should rarely override operator==() when you create ref-
erence types. The .NET Framework classes expect operator==() to follow 
reference semantics for all reference types.

Finally, you come to IStructuralEquality, which is implemented on 
System.Array and the Tuple<> generic classes. It enables those types to 
implement value semantics without enforcing value semantics for every 
comparison. It is doubtful that you’ll ever create types that implement 
IStructuralEquality. It is needed only for those lightweight types. Imple-
menting IStructuralEquality declares that a type can be composed into a 
larger object that implements value-based semantics.

C# gives you numerous ways to test equality, but you need to consider pro-
viding your own definitions for only two of them, along with supporting the 
analogous interfaces. You never override the static Object.ReferenceEquals() 
and static Object.Equals() because they provide the correct tests, regard-
less of the runtime type. You always override instance Equals() and oper-
ator==() for value types to provide better performance. You override 
instance Equals() for reference types when you want equality to mean 
something other than object identity. Anytime you override Equals() you 
implement IEquatable<T>. Simple, right?

Item 7: Understand the Pitfalls of GetHashCode()

This is the only item in this book dedicated to one function that you should 
avoid writing. GetHashCode() is used in one place only: to define the hash 
value for keys in a hash-based collection, typically the HashSet<T> or
 Dictionary<K,V> containers. That’s good because there are a number of 
problems with the base class implementation of GetHashCode(). For ref-
erence types, it works but is inefficient. For value types, the base class ver-
sion is often incorrect. But it gets worse. It’s entirely possible that you 
cannot write GetHashCode() so that it is both efficient and correct. No
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single function generates more discussion and more confusion than
 GetHashCode(). Read on to remove all that confusion.

If you’re defining a type that won’t ever be used as the key in a container, 
this won’t matter. Types that represent window controls, Web page con-
trols, or database connections are unlikely to be used as keys in a collec-
tion. In those cases, do nothing. All reference types will have a hash code 
that is correct, even if it is very inefficient. Value types should be 
immutable (see Item 20), in which case, the default implementation always 
works, although it is also inefficient. In most types that you create, the best 
approach is to avoid the existence of GetHashCode() entirely.

One day, you’ll create a type that is meant to be used as a hash key, and 
you’ll need to write your own implementation of GetHashCode(), so read 
on. Hash-based containers use hash codes to optimize searches. Every 
object generates an integer value called a hash code. Objects are stored in 
buckets based on the value of that hash code. To search for an object, you 
request its key and search just that one bucket. In .NET, every object has a 
hash code, determined by System.Object.GetHashCode(). Any overload 
of GetHashCode() must follow these three rules:

1. If two objects are equal (as defined by operator==), they must gen-
erate the same hash value. Otherwise, hash codes can’t be used to 
find objects in containers.

2. For any object A, A.GetHashCode() must be an instance invariant. 
No matter what methods are called on A, A.GetHashCode() must 
always return the same value. That ensures that an object placed in a 
bucket is always in the right bucket.

3. The hash function should generate a random distribution among all 
integers for all inputs. That’s how you get efficiency from a hash-
based container.

Writing a correct and efficient hash function requires extensive knowledge 
of the type to ensure that rule 3 is followed. The versions defined in 
System.Object and System.ValueType do not have that advantage. These 
versions must provide the best default behavior with almost no knowl-
edge of your particular type. Object.GetHashCode() uses an internal field 
in the System.Object class to generate the hash value. Each object created 
is assigned a unique object key, stored as an integer, when it is created. 
These keys start at 1 and increment every time a new object of any type gets 
created. The object identity field is set in the System.Object constructor and
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cannot be modified later. Object.GetHashCode() returns this value as the 
hash code for a given object.

Now examine Object.GetHashCode() in light of those three rules. If two 
objects are equal, Object.GetHashCode() returns the same hash value, 
unless you’ve overridden operator==. System.Object’s version of opera-
tor==() tests object identity. GetHashCode() returns the internal object 
identity field. It works. However, if you’ve supplied your own version of 
operator==, you must also supply your own version of GetHashCode() to 
ensure that the first rule is followed. See Item 6 for details on equality.

The second rule is followed: After an object is created, its hash code never 
changes.

The third rule, a random distribution among all integers for all inputs, 
does not hold. A numeric sequence is not a random distribution among all 
integers unless you create an enormous number of objects. The hash codes 
generated by Object.GetHashCode() are concentrated at the low end of 
the range of integers.

This means that Object.GetHashCode() is correct but not efficient. If you 
create a hashtable based on a reference type that you define, the default 
behavior from System.Object is a working, but slow, hashtable. When you 
create reference types that are meant to be hash keys, you should override 
GetHashCode() to get a better distribution of the hash values across all 
integers for your specific type.

Before covering how to write your own override of GetHashCode, this sec-
tion examines ValueType.GetHashCode() with respect to those same three 
rules. System.ValueType overrides GetHashCode(), providing the default 
behavior for all value types. Its version returns the hash code from the first 
field defined in the type. Consider this example:

public struct MyStruct 

{

private string msg; 

private int id; 

private DateTime epoch;

}

The hash code returned from a MyStruct object is the hash code generated 
by the msg field. The following code snippet always returns true, assum-
ing msg is not null:
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MyStruct s = new MyStruct();

s.SetMessage("Hello"); 

return s.GetHashCode() == s.GetMessage().GetHashCode();

The first rule says that two objects that are equal (as defined by opera-
tor==()) must have the same hash code. This rule is followed for value 
types under most conditions, but you can break it, just as you could with 
for reference types. ValueType.operator==() compares the first field in the
struct, along with every other field. That satisfies rule 1. As long as any 
override that you define for operator== uses the first field, it will work. 
Any struct whose first field does not participate in the equality of the 
type violates this rule, breaking GetHashCode().

The second rule states that the hash code must be an instance invariant. 
That rule is followed only when the first field in the struct is an
immutable field. If the value of the first field can change, so can the hash 
code. That breaks the rules. Yes, GetHashCode() is broken for any struct
that you create when the first field can be modified during the lifetime of 
the object. It’s yet another reason why immutable value types are your best 
bet (see Item 20).

The third rule depends on the type of the first field and how it is used. If 
the first field generates a random distribution across all integers, and the 
first field is distributed across all values of the struct, then the struct
generates an even distribution as well. However, if the first field often has 
the same value, this rule is violated. Consider a small change to the earlier
struct:

public struct MyStruct 

{

private DateTime epoch; 

private string msg; 

private int id;

}

If the epoch field is set to the current date (not including the time), all 
MyStruct objects created in a given date will have the same hash code. That 
prevents an even distribution among all hash code values.

Summarizing the default behavior, Object.GetHashCode() works correctly 
for reference types, although it does not necessarily generate an efficient 
distribution. (If you have overridden Object.operator==(), you can break
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GetHashCode()). ValueType.GetHashCode() works only if the first field in 
your struct is read-only. ValueType.GetHashCode() generates an effi-
cient hash code only when the first field in your struct contains values 
across a meaningful subset of its inputs.

If you’re going to build a better hash code, you need to place some constraints 
on your type. Ideally, you’d create an immutable value type. The rules for 
a working GetHashCode() are simpler for immutable value types than 
they are for unconstrained types. Examine the three rules again, this time 
in the context of building a working implementation of GetHashCode().

First, if two objects are equal, as defined by operator==(), they must return 
the same hash value. Any property or data value used to generate the hash 
code must also participate in the equality test for the type. Obviously, this 
means that the same properties used for equality are used for hash code 
generation. It’s possible to have properties participate in equality that are 
not used in the hash code computation. The default behavior for
 System.ValueType does just that, but it often means that rule 3 usually gets 
violated. The same data elements should participate in both computations.

The second rule is that the return value of GetHashCode() must be an 
instance invariant. Imagine that you defined a reference type, Customer:

public class Customer 

{

private string name; 

private decimal revenue;

public Customer(string name) 

{

this.name = name; 

}

public string Name 

{

get { return name; } 

set { name = value; }

}

public override int GetHashCode() 

{

48 ❘ Chapter 1  C# Language Idioms



ptg

return name.GetHashCode(); 

}

}

Suppose that you execute the following code snippet:

Customer c1 = new Customer("Acme Products"); 

myHashMap.Add(c1, orders); 

// Oops, the name is wrong: 

c1.Name = "Acme Software";

c1 is lost somewhere in the hash map. When you placed c1 in the map, the 
hash code was generated from the string "Acme Products". After you 
change the name of the customer to "Acme Software", the hash code value 
changed. It’s now being generated from the new name: "Acme Software". 
c1 is stored in the bucket defined by "Acme Products", but it should be in 
the bucket defined for "Acme Software". You’ve lost that customer in your 
own collection. It’s lost because the hash code is not an object invariant. 
You’ve changed the correct bucket after storing the object.

The earlier situation can occur only if Customer is a reference type. Value 
types misbehave differently, but they still cause problems. If customer is a 
value type, a copy of c1 gets stored in the hash map. The last line chang-
ing the value of the name has no effect on the copy stored in the hash map. 
Because boxing and unboxing make copies as well, it’s very unlikely that 
you can change the members of a value type after that object has been 
added to a collection.

The only way to address rule 2 is to define the hash code function to return 
a value based on some invariant property or properties of the object.
 System.Object abides by this rule using the object identity, which does not 
change. System.ValueType hopes that the first field in your type does not 
change. You can’t do better without making your type immutable. When 
you define a value type that is intended for use as a key type in a hash con-
tainer, it must be an immutable type. If you violate this recommendation, 
then the users of your type will find a way to break hashtables that use 
your type as keys. Revisiting the Customer class, you can modify it so that 
the customer name is immutable. The highlight shows the changes to 
make a customer’s name immutable:

public class Customer 

{

Item 7: Understand the Pitfalls of GetHashCode() ❘ 49



ptg

private string name; 

private decimal revenue;

public Customer(string name) 

{

this.name = name; 

}

public string Name 

{

get { return name; }

// Name is readonly 

}

public decimal Revenue 

{

get { return revenue; } 

set { revenue = value; }

}

public override int GetHashCode() 

{

return name.GetHashCode(); 

}

public Customer ChangeName(string newName)

{

return new Customer(newName) { Revenue = revenue };

} 

}

ChangeName() creates a new Customer object, using the constructor and 
object initialize syntax to set the current revenue. Making the name 
immutable changes how you must work with customer objects to modify 
the name:

Customer c1 = new Customer("Acme Products"); 

myDictionary.Add(c1, orders); 

// Oops, the name is wrong: 

Customer c2 = c1.ChangeName("Acme Software"); 

Order o = myDictionary[c1];
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myDictionary.Remove(c1); 

myDictionary.Add(c2, o);

You have to remove the original customer, change the name, and add the 
new Customer object to the dictionary. It looks more cumbersome than 
the first version, but it works. The previous version allowed programmers 
to write incorrect code. By enforcing the immutability of the properties 
used to calculate the hash code, you enforce correct behavior. Users of your 
type can’t go wrong. Yes, this version is more work. You’re forcing devel-
opers to write more code, but only because it’s the only way to write the 
correct code. Make certain that any data members used to calculate the 
hash value are immutable.

The third rule says that GetHashCode() should generate a random distri-
bution among all integers for all inputs. Satisfying this requirement 
depends on the specifics of the types you create. If a magic formula existed, 
it would be implemented in System.Object, and this item would not exist. 
A common and successful algorithm is to XOR all the return values from 
GetHashCode() on all fields in a type. If your type contains some muta-
ble fields, exclude those fields from the calculations.

GetHashCode() has very specific requirements: Equal objects must pro-
duce equal hash codes, and hash codes must be object invariants and must 
produce an even distribution to be efficient. All three can be satisfied only 
for immutable types. For other types, rely on the default behavior, but 
understand the pitfalls.

Item 8: Prefer Query Syntax to Loops

There is no lack of support for different control structures in the C# lan-
guage: for, while, do / while, and foreach, are all part of the language. 
It’s doubtful the language designers missed any amazing looping construct 
from the past history of computer language design. But there’s often a 
much better way: query syntax.

Query syntax enables you to move your program logic from a more imper-
ative model to a declarative model. Query syntax defines what the answer 
is and defers the decision about how to create that answer to the particu-
lar implementation. Throughout this item, where I refer to query syntax, 
you can get the same benefits through the method call syntax as you can 
from the query syntax. The important point is that the query syntax, and
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by extension, the method syntax that implements the query expression 
pattern, provides a cleaner expression of your intent than imperative loop-
ing constructs.

This code snippet shows an imperative method of filling an array and then 
printing its contents to the Console:

int[] foo = new int[100];

for (int num = 0; num < foo.Length; num++) 

foo[num] = num * num;

foreach (int i in foo) 

Console.WriteLine(i.ToString());

Even this small example focuses too much on how actions are performed 
than on what actions are performed. Reworking this small example to use 
the query syntax creates more readable code and enables reuse of different 
building blocks.

As a first step, you can change the generation of the array to a query result:

int[] foo = (from n in Enumerable.Range(0, 100) 

select n * n).ToArray();

You can then do a similar change to the second loop, although you’ll also 
need to write an extension method to perform some action on all the ele-
ments:

foo.ForAll((n) => Console.WriteLine(n.ToString()));

The .NET BCL has a ForAll implementation in List<T>. It’s just as sim-
ple to create one for IEnumerable<T>:

public static class Extensions 

{

public static void ForAll<T>( 

this IEnumerable<T> sequence, 

Action<T> action)

{

foreach (T item in sequence) 

action(item);

} 

}
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It may not look that significant, but it can enable more reuse. Anytime you 
are performing work on a sequence of elements, ForAll can do the work.

This is a small, simple operation, so you may not see much benefit. In fact, 
you’re probably right. Let’s look at some different problems.

Many operations require you to work through nested loops. Suppose you 
need to generate (X,Y) pairs for all integers from 0 through 99. It’s obvi-
ous how you would do that with nested loops:

private static IEnumerable<Tuple<int, int>> ProduceIndices() 

{

for (int x = 0; x < 100; x++) 

for (int y = 0; y < 100; y++)

yield return Tuple.Create(x, y);

}

Of course, you could produce the same objects with a query:

private static IEnumerable<Tuple<int, int>> QueryIndices() 

{

return from x in Enumerable.Range(0, 100) 

from y in Enumerable.Range(0, 100) 

select Tuple.Create(x, y);

}

They look similar, but the query syntax keeps its simplicity even as the 
problem description gets more difficult. Change the problem to generat-
ing only those pairs where the sum of X and Y is less than 100. Compare 
these two methods:

private static IEnumerable<Tuple<int, int>> ProduceIndices2() 

{

for (int x = 0; x < 100; x++) 

for (int y = 0; y < 100; y++)

if (x + y < 100) 

yield return Tuple.Create(x, y);

}

private static IEnumerable<Tuple<int, int>> QueryIndices2() 

{

return from x in Enumerable.Range(0, 100) 

from y in Enumerable.Range(0, 100)
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where x + y < 100 

select Tuple.Create(x, y);

}

It’s still close, but the imperative syntax starts to hide its meaning under 
the necessary syntax used to produce the result. So let’s change the prob-
lem a bit again. Now, add that you must return the points in decreasing 
order based on their distance from the origin.

Here are two different methods that would produce the correct result:

private static IEnumerable<Tuple<int, int>> ProduceIndices3() 

{

var storage = new List<Tuple<int, int>>();

for (int x = 0; x < 100; x++) 

for (int y = 0; y < 100; y++)

if (x + y < 100) 

storage.Add(Tuple.Create(x, y));

storage.Sort((point1, point2) => 

(point2.Item1*point2.Item1 + 

point2.Item2 * point2.Item2).CompareTo( 

point1.Item1 * point1.Item1 + 

point1.Item2 * point1.Item2));

return storage; 

} 

private static IEnumerable<Tuple<int, int>> QueryIndices3() 

{

return from x in Enumerable.Range(0, 100) 

from y in Enumerable.Range(0, 100) 

where x + y < 100 

orderby (x*x + y*y) descending 

select Tuple.Create(x, y);

}

Something clearly changed now. The imperative version is much more dif-
ficult to comprehend. If you looked quickly, you almost certainly did not 
notice that the arguments on the comparison function got reversed. That’s 
to ensure that the sort is in descending order. Without comments, or other 
supporting documentation, the imperative code is much more difficult to 
read.
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Even if you did spot where the parameter order was reversed, did you think 
that it was an error? The imperative model places so much more empha-
sis on how actions are performed that it’s easy to get lost in those actions 
and lose the original intent for what actions are being accomplished.

There’s one more justification for using query syntax over looping con-
structs: Queries create a more composable API than looping constructs 
can provide. Query syntax naturally leads to constructing algorithms as 
small blocks of code that perform one operation on a sequence. The 
deferred execution model for queries enables developers to compose these 
single operations into multiple operations that can be accomplished in 
one enumeration of the sequence. Looping constructs cannot be similarly 
composed. You must either create interim storage for each step, or create 
methods for each combination of operations on a sequence.

That last example shows how this works. The operation combines a filter 
(the where clause) with a sort (the orderby clause) and a projection (the
select clause). All of these are accomplished in one enumeration opera-
tion. The imperative version creates an interim storage model and sepa-
rates the sort into a distinct operation.

I’ve discussed this as query syntax, though you should remember that 
every query has a corresponding method call syntax. Sometimes the query 
is more natural, and sometimes the method call syntax is more natural. In 
the example above, the query syntax is much more readable. Here’s the 
equivalent method call syntax:

private static IEnumerable<Tuple<int, int>> MethodIndices3() 

{

return Enumerable.Range(0, 100). 

SelectMany(x => Enumerable.Range(0,100), 

(x,y) => Tuple.Create(x,y)).

Where(pt => pt.Item1 + pt.Item2 < 100). 

OrderByDescending(pt => 

pt.Item1* pt.Item1 + pt.Item2 * pt.Item2);

}

It’s a matter of style whether the query or the method call syntax is more 
readable. In this instance, I’m convinced the query syntax is clearer. How-
ever, other examples may be different. Furthermore, some methods do not 
have equivalent query syntax. Methods such as Take, TakeWhile, Skip, 
SkipWhile, Min, and Max require you to use the method syntax at some
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level. Other languages, in particular VB.NET, did define query syntax for
many of these keywords.

This is the part of any discussion where someone usually asserts that 
queries perform more slowly than other loops. While you can certainly 
create examples where a hand-coded loop will outperform a query, it’s not 
a general rule. You do need to measure performance to determine if you 
have a specific case where the query constructs don’t perform well enough. 
However, before completely rewriting an algorithm, consider the parallel 
extensions for LINQ. Another advantage to using query syntax is that you 
can execute those queries in parallel using the .AsParallel() method. (See 
Item 35.)

C# began as an imperative language. It continues to include all the fea-
tures that are part of that heritage. It’s natural to reach for the most famil-
iar tools at your disposal. However, those tools might not be the best tools. 
When you find yourself writing any form of a looping construct, ask your-
self if you can write that code as a query. If the query syntax does not work, 
consider using the method call syntax instead. In almost all cases, you’ll 
find that you create cleaner code than you would using imperative loop-
ing constructs.

Item 9: Avoid Conversion Operators in Your APIs

Conversion operators introduce a kind of substitutability between classes. 
Substitutability means that one class can be substituted for another. This 
can be a benefit: An object of a derived class can be substituted for an 
object of its base class, as in the classic example of the shape hierarchy. You 
create a Shape base class and derive a variety of customizations: Rectangle, 
Ellipse, Circle, and so on. You can substitute a Circle anywhere a Shape is 
expected. That’s using polymorphism for substitutability. It works because 
a circle is a specific type of shape. When you create a class, certain conver-
sions are allowed automatically. Any object can be substituted for an 
instance of System.Object, the root of the .NET class hierarchy. In the same 
fashion, any object of a class that you create will be substituted implicitly 
for an interface that it implements, any of its base interfaces, or any of its 
base classes. The language also supports a variety of numeric conversions.

When you define a conversion operator for your type, you tell the compiler 
that your type may be substituted for the target type. These substitutions 
often result in subtle errors because your type probably isn’t a perfect sub-
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stitute for the target type. Side effects that modify the state of the target 
type won’t have the same effect on your type. Worse, if your conversion 
operator returns a temporary object, the side effects will modify the tem-
porary object and be lost forever to the garbage collector. Finally, the rules 
for invoking conversion operators are based on the compile-time type of 
an object, not the runtime type of an object. Users of your type might need 
to perform multiple casts to invoke the conversion operators, a practice 
that leads to unmaintainable code.

If you want to convert another type into your type, use a constructor. This 
more clearly reflects the action of creating a new object. Conversion oper-
ators can introduce hard-to-find problems in your code. Suppose that you 
inherit the code for a library shown in Figure 1.1. Both the Circle class and 
the Ellipse class are derived from the Shape class. You decide to leave that 
hierarchy in place because you believe that, although the Circle and Ellipse 
are related, you don’t want to have nonabstract leaf classes in your hierarchy, 
and several implementation problems occur when you try to derive the 
Circle class from the Ellipse class. However, you realize that every circle 
could be an ellipse. In addition, some ellipses could be substituted for circles.

That leads you to add two conversion operators. Every Circle is an Ellipse, 
so you add an implicit conversion to create a new Ellipse from a Circle. An 
implicit conversion operator will be called whenever one type needs to be 
converted to another type. By contrast, an explicit conversion will be called 
only when the programmer puts a cast operator in the source code.
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public class Circle : Shape 

{

private PointF center; 

private float radius;

public Circle() : 

this(PointF.Empty, 0)

{ 

}

public Circle(PointF c, float r) 

{

center = c; 

radius = r;

}

public override void Draw() 

{

//... 

}

static public implicit operator Ellipse(Circle c) 

{

return new Ellipse(c.center, c.center,

c.radius, c.radius); 

}

}

Now that you’ve got the implicit conversion operator, you can use a  Circle 
anywhere an Ellipse is expected. Furthermore, the conversion happens 
automatically:

public static double ComputeArea(Ellipse e) 

{

// return the area of the ellipse. 

return e.R1 * e.R2 * Math.PI;

}

// call it: 

Circle c1 = new Circle(new PointF(3.0f, 0), 5.0f); 

ComputeArea(c1);

58 ❘ Chapter 1  C# Language Idioms



ptg

This sample shows what I mean by substitutability: A circle has been sub-
stituted for an ellipse. The ComputeArea function works even with the 
substitution. You got lucky. But examine this function:

public static void Flatten(Ellipse e) 

{

e.R1 /= 2;

e.R2 *= 2; 

}

// call it using a circle:

Circle c = new Circle(new PointF(3.0f, 0), 5.0f); 

Flatten(c);

This won’t work. The Flatten() method takes an ellipse as an argument. 
The compiler must somehow convert a circle to an ellipse. You’ve created an 
implicit conversion that does exactly that. Your conversion gets called, and 
the Flatten() function receives as its parameter the ellipse created by your 
implicit conversion. This temporary object is modified by the Flatten() 
function and immediately becomes garbage. The side effects expected 
from your Flatten() function occur, but only on a temporary object. The 
end result is that nothing happens to the circle, c.

Changing the conversion from implicit to explicit only forces users to add 
a cast to the call:

Circle c = new Circle(new PointF(3.0f, 0), 5.0f); 

Flatten((Ellipse)c);

The original problem remains. You just forced your users to add a cast to 
cause the problem. You still create a temporary object, flatten the tempo-
rary object, and throw it away. The circle, c, is not modified at all. Instead, 
if you create a constructor to convert the Circle to an Ellipse, the actions 
are clearer:

Circle c = new Circle(new PointF(3.0f, 0), 5.0f); 

Flatten(new Ellipse(c));

Most programmers would see the previous two lines and immediately real-
ize that any modifications to the ellipse passed to Flatten() are lost. They 
would fix the problem by keeping track of the new object:

Circle c = new Circle(new PointF(3.0f, 0), 5.0f); 

Flatten(c);

Item 9: Avoid Conversion Operators in Your APIs ❘ 59



ptg

// Work with the circle. 

// ...

// Convert to an ellipse.

Ellipse e = new Ellipse(c); 

Flatten(e);

The variable e holds the flattened ellipse. By replacing the conversion oper-
ator with a constructor, you have not lost any functionality; you’ve merely 
made it clearer when new objects are created. (Veteran C++ programmers 
should note that C# does not call constructors for implicit or explicit con-
versions. You create new objects only when you explicitly use the new oper-
ator, and at no other time. There is no need for the explicit keyword on
constructors in C#.)

Conversion operators that return fields inside your objects will not exhibit 
this behavior. They have other problems. You’ve poked a serious hole in the 
encapsulation of your class. By casting your type to some other object, 
clients of your class can access an internal variable. That’s best avoided for 
all the reasons discussed in Item 26.

Conversion operators introduce a form of substitutability that causes 
problems in your code. You’re indicating that, in all cases, users can rea-
sonably expect that another class can be used in place of the one you cre-
ated. When this substituted object is accessed, you cause clients to work 
with temporary objects or internal fields in place of the class you created. 
You then modify temporary objects and discard the results. These subtle 
bugs are hard to find because the compiler generates code to convert these 
objects. Avoid conversion operators in your APIs.

Item 10: Use Optional Parameters to Minimize Method 
Overloads

C# now has support for named parameters at the call site. That means the 
names of formal parameters are now part of the public interface for your 
type. Changing the name of a public parameter could break calling code. 
That means you should avoid using named parameters in many situations, 
and also you should avoid changing the names of the formal parameters 
on public, or protected methods.

Of course, no language designer adds features just to make your life diffi-
cult. Named parameters were added for a reason, and they have positive
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uses. Named parameters work with optional parameters to limit the nois-
iness around many APIs, especially COM APIs for Microsoft Office. This 
small snippet of code creates a Word document and inserts a small amount 
of text, using the classic COM methods:

var wasted = Type.Missing; 

var wordApp = new

Microsoft.Office.Interop.Word.Application(); 

wordApp.Visible = true;

Documents docs = wordApp.Documents;

Document doc = docs.Add(ref wasted, 

ref wasted, ref wasted, ref wasted);

Range range = doc.Range(0, 0);

range.InsertAfter("Testing, testing, testing. . .");

This small, and arguably useless, snippet uses the Type.Missing object four 
times. Any Office Interop application will use a much larger number of 
Type.Missing objects in the application. Those instances clutter up your 
application and hide the actual logic of the software you’re building.

That extra noise was the primary driver behind adding optional and 
named parameters in the C# language. Optional parameters means that 
these Office APIs can create default values for all those locations where 
Type.Missing would be used. That simplifies even this small snippet:

var wordApp = new

Microsoft.Office.Interop.Word.Application(); 

wordApp.Visible = true;

Documents docs = wordApp.Documents;

Document doc = docs.Add();

Range range = doc.Range(0, 0);

range.InsertAfter("Testing, testing, testing. . .");

Even this small change increases the readability of this snippet. Of course, 
you may not always want to use all the defaults. And yet, you still don’t 
want to add all the Type.Missing parameters in the middle. Suppose you
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wanted to create a new Web page instead of new Word document. That’s 
the last parameter of four in the Add() method. Using named parameters, 
you can specify just that last parameter:

var wordApp = new

Microsoft.Office.Interop.Word.Application(); 

wordApp.Visible = true;

Documents docs = wordApp.Documents;

object docType = WdNewDocumentType.wdNewWebPage; 

Document doc = docs.Add(DocumentType : ref docType);

Range range = doc.Range(0, 0);

range.InsertAfter("Testing, testing, testing. . .");

Named parameters mean that in any API with default parameters, you 
only need to specify those parameters you intend to use. It’s simpler than 
multiple overloads. In fact, with four different parameters, you would need 
to create 15 different overloads of the Add() method to achieve the same 
level of flexibility that named and optional parameters provide. Remem-
ber that some of the Office APIs have as many as 16 parameters, and 
optional and named parameters are a big help.

I left the ref decorator in the parameter list, but another change in C# 4.0 
makes that optional in COM scenarios. That’s because COM, in general, 
passes objects by reference, so almost all parameters are passed by refer-
ence, even if they aren’t modified by the called method. In fact, the Range() 
call passes the values (0,0) by reference. I did not include the ref modifier 
there, because that would be clearly misleading. In fact, in most produc-
tion code, I would not include the ref modifier on the call to Add() either. 
I did above so that you could see the actual API signature.

Of course, just because the justification for named and optional parame-
ters was COM and the Office APIs, that doesn’t mean you should limit 
their use to Office interop applications. In fact, you can’t. Developers call-
ing your API can decorate calling locations using named parameters 
whether you want them to or not.

This method:

private void SetName(string lastName, string firstName) 

{
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// elided 

}

Can be called using named parameters to avoid any confusion on the 
order:

SetName(lastName: "Wagner", firstName: "Bill");

Annotating the names of the parameters ensures that people reading this 
code later won’t wonder if the parameters are in the right order or not. 
Developers will use named parameters whenever adding the names will 
increase the clarity of the code someone is trying to read. Anytime you use 
methods that contain multiple parameters of the same type, naming the 
parameters at the callsite will make your code more readable.

Changing parameter names manifests itself in an interesting way as a 
breaking change. The parameter names are stored in the MSIL only at the 
callsite, not at the calling site. You can change parameter names and release 
the component without breaking any users of your component in the field. 
The developers who use your component will see a breaking change when 
they go to compile against the updated version, but any earlier client 
assemblies will continue to run correctly. So at least you won’t break exist-
ing applications in the field. The developers who use your work will still be 
upset, but they won’t blame you for problems in the field. For example, 
suppose you modify SetName() by changing the parameter names:

public void SetName(string Last, string First)

You could compile and release this assembly as a patch into the field. Any 
assemblies that called this method would continue to run, even if they 
contain calls to SetName that specify named parameters. However, when 
client developers went to build updates to their assemblies, any code like 
this would no longer compile:

SetName(lastName: "Wagner", firstName: "Bill");

The parameter names have changed.

Changing the default value also requires callers to recompile in order to 
pick up those changes. If you compile your assembly and release it as a 
patch, all existing callers would continue to use the previous default 
parameter.

Of course, you don’t want to upset the developers who use your components 
either. For that reason, you must consider the names of your parameters

Item 10: Use Optional Parameters to Minimize Method Overloads ❘ 63



ptg

as part of the public interface to your component. Changing the names of 
parameters will break client code at compile time.

In addition, adding parameters (even if they have default values) will break 
at runtime. Optional parameters are implemented in a similar fashion to 
named parameters. The callsite will contain annotations in the MSIL that 
reflect the existence of default values, and what those default values are. 
The calling site substitutes those values for any optional parameters the 
caller did not explicitly specify.

Therefore, adding parameters, even if they are optional parameters, is a 
breaking change at runtime. If they have default values, it’s not a breaking 
change at compile time.

Now, after that explanation, the guidance should be clearer. For your ini-
tial release, use optional and named parameters to create whatever com-
bination of overloads your users may want to use. However, once you start 
creating future releases, you must create overloads for additional param-
eters. That way, existing client applications will still function. Furthermore, 
in any future release, avoid changing parameter names. They are now part 
of your public interface.

Item 11: Understand the Attraction of Small Functions

As experienced programmers, in whatever language we favored before C#, 
we internalized several practices for developing more efficient code. Some-
times what worked in our previous environment is counterproductive in 
the .NET environment. This is very true when you try to hand-optimize 
algorithms for the C# compiler. Your actions often prevent the JIT com-
piler from more effective optimizations. Your extra work, in the name of 
performance, actually generates slower code. You’re better off writing the 
clearest code you can create. Let the JIT compiler do the rest. One of the 
most common examples of premature optimizations causing problems is 
when you create longer, more complicated functions in the hopes of avoid-
ing function calls. Practices such as hoisting function logic into the bod-
ies of loops actually harm the performance of your .NET applications. It’s 
counterintuitive, so let’s go over all the details.

The .NET runtime invokes the JIT compiler to translate the IL generated 
by the C# compiler into machine code. This task is amortized across the 
lifetime of your program’s execution. Instead of JITing your entire appli-
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cation when it starts, the CLR invokes the JITer on a function-by-function 
basis. This minimizes the startup cost to a reasonable level, yet keeps the 
application from becoming unresponsive later when more code needs to 
be JITed. Functions that do not ever get called do not get JITed. You can 
minimize the amount of extraneous code that gets JITed by factoring code 
into more, smaller functions rather than fewer larger functions. Consider 
this rather contrived example:

public string BuildMsg(bool takeFirstPath) 

{

StringBuilder msg = new StringBuilder(); 

if (takeFirstPath) 

{

msg.Append("A problem occurred."); 

msg.Append("\nThis is a problem."); 

msg.Append("imagine much more text");

} 

else 

{

msg.Append("This path is not so bad."); 

msg.Append("\nIt is only a minor inconvenience."); 

msg.Append("Add more detailed diagnostics here.");

} 

return msg.ToString();

}

The first time BuildMsg gets called, both paths are JITed. Only one is 
needed. But suppose you rewrote the function this way:

public string BuildMsg2(bool takeFirstPath) 

{

if (takeFirstPath) 

{

return FirstPath(); 

} 

else 

{

return SecondPath(); 

}

}
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Because the body of each clause has been factored into its own function, 
that function can be JITed on demand rather than the first time BuildMsg 
is called. Yes, this example is contrived for space, and it won’t make much 
difference. But consider how often you write more extensive examples: an
if statement with 20 or more statements in both branches of the if state-
ment. You’ll pay to JIT both clauses the first time the function is entered. 
If one clause is an unlikely error condition, you’ll incur a cost that you 
could easily avoid. Smaller functions mean that the JIT compiler compiles 
the logic that’s needed, not lengthy sequences of code that won’t be used 
immediately. The JIT cost savings multiplies for long switch statements, 
with the body of each case statement defined inline rather than in separate 
functions.

Smaller and simpler functions make it easier for the JIT compiler to sup-
port enregistration. Enregistration is the process of selecting which local 
variables can be stored in registers rather than on the stack. Creating fewer 
local variables gives the JIT compiler a better chance to find the best can-
didates for enregistration. The simplicity of the control flow also affects 
how well the JIT compiler can enregister variables. If a function has one 
loop, that loop variable will likely be enregistered. However, the JIT com-
piler must make some tough choices about enregistering loop variables 
when you create a function with several loops. Simpler is better. A smaller 
function is more likely to contain fewer local variables and make it easier 
for the JIT compiler to optimize the use of the registers.

The JIT compiler also makes decisions about inlining methods. Inlining 
means to substitute the body of a function for the function call. Consider 
this example:

// readonly name property: 

public string Name { get; private set; }

// access: 

string val = Obj.Name;

The body of the property accessor contains fewer instructions than the 
code necessary to call the function: saving register states, executing method 
prologue and epilogue code, and storing the function return value. There 
would be even more work if arguments needed to be pushed on the stack 
as well. There would be far fewer machine instructions if you were to use 
a public field.

66 ❘ Chapter 1  C# Language Idioms



ptg

Of course, you would never do that because you know better than to cre-
ate public data members (see Item 1). The JIT compiler understands your 
need for both efficiency and elegance, so it inlines the property accessor. 
The JIT compiler inlines methods when the speed or size benefits (or both) 
make it advantageous to replace a function call with the body of the called 
function. The standard does not define the exact rules for inlining, and 
any implementation could change in the future. Moreover, it’s not your 
responsibility to inline functions. The C# language does not even provide 
you with a keyword to give a hint to the compiler that a method should be 
inlined. In fact, the C# compiler does not provide any hints to the JIT com-
piler regarding inlining. (You can request that a method not be inlined 
using the System.Runtime.CompilerServices.MethodImpl attribute, spec-
ifying the NoInlining option. It’s typically done to preserve method names 
on the callstack for debugging scenarios.)

[MethodImpl(MethodImplOptions.NoInlining)]

All you can do is ensure that your code is as clear as possible, to make it eas-
ier for the JIT compiler to make the best decision possible. The recom-
mendation should be getting familiar by now: Smaller methods are better 
candidates for inlining. But remember that even small functions that are 
virtual or that contain try/catch blocks cannot be inlined.

Inlining modifies the principle that code gets JITed when it will be exe-
cuted. Consider accessing the name property again:

string val = "Default Name"; 

if (Obj != null)

val = Obj.Name;

If the JIT compiler inlines the property accessor, it must JIT that code 
when the containing method is called.

This recommendation to build smaller and composable methods takes on 
greater importance in the world of LINQ queries and functional pro-
gramming. All the LINQ query methods are rather small. Also, most of 
the predicates, actions, and functions passed to LINQ queries will be small 
blocks of code. This small, more composable nature means that those 
methods, and your actions, predicates, and functions, are all more easily 
reused. In addition, the JIT compiler has a better chance of optimizing 
that code to create more efficient runtime execution.
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It’s not your responsibility to determine the best machine-level represen-
tation of your algorithms. The C# compiler and the JIT compiler together 
do that for you. The C# compiler generates the IL for each method, and the 
JIT compiler translates that IL into machine code on the destination 
machine. You should not be too concerned about the exact rules the JIT 
compiler uses in all cases; those will change over time as better algorithms 
are developed. Instead, you should be concerned about expressing your 
algorithms in a manner that makes it easiest for the tools in the environ-
ment to do the best job they can. Luckily, those rules are consistent with 
the rules you already follow for good software-development practices. One 
more time: smaller and simpler functions.

Remember that translating your C# code into machine-executable code is 
a two-step process. The C# compiler generates IL that gets delivered in 
assemblies. The JIT compiler generates machine code for each method (or 
group of methods, when inlining is involved), as needed. Small functions 
make it much easier for the JIT compiler to amortize that cost. Small func-
tions are also more likely to be candidates for inlining. It’s not just small-
ness: Simpler control flow matters just as much. Fewer control branches 
inside functions make it easier for the JIT compiler to enregister variables. 
It’s not just good practice to write clearer code; it’s how you create more 
efficient code at runtime.
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The simple fact that .NET programs run in a managed environment has a 
big impact on the kinds of designs that create effective C#. Taking advan-
tage of that environment requires changing your thinking from other envi-
ronments to the .NET Common Language Runtime (CLR). It means 
understanding the .NET Garbage Collector. An overview of the .NET 
memory management environment is necessary to understand the spe-
cific recommendations in this chapter, so let’s get on with the overview.

The Garbage Collector (GC) controls managed memory for you. Unlike 
native environments, you are not responsible for most memory leaks, 
dangling pointers, uninitialized pointers, or a host of other memory-
 management issues. But the Garbage Collector is not magic: You need to 
clean up after yourself, too. You are responsible for unmanaged resources 
such as file handles, database connections, GDI+ objects, COM objects, 
and other system objects. In addition you can cause objects to stay in 
memory longer than you’d like because you’ve created links between them 
using event handlers or delegates. Queries, which execute when results are 
requested, can also cause objects to remain referenced longer than you 
would expect. Queries capture bound variables in closures, and those 
bound variables are reachable until the containing results have gone out of 
scope.

Here’s the good news: Because the GC controls memory, certain design 
idioms are much easier to implement. Circular references, both simple 
relationships and complex webs of objects, are much easier. The GC’s 
Mark and Compact algorithm efficiently detects these relationships and 
removes unreachable webs of objects in their entirety. The GC determines 
whether an object is reachable by walking the object tree from the appli-
cation’s root object instead of forcing each object to keep track of refer-
ences to it, as in COM. The EntitySet class provides an example of how 
this algorithm simplifies object ownership decisions. An Entity is a col-
lection of objects loaded from a database. Each Entity may contain refer-
ences to other Entity objects. Any of these entities may also contain links
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to other entities. Just like the relational database entity sets model, these 
links and references may be circular.

There are references all through the web of objects represented by differ-
ent EntitySets. Releasing memory is the GC’s responsibility. Because the 
.NET Framework designers did not need to free these objects, the com-
plicated web of object references did not pose a problem. No decision 
needed to be made regarding the proper sequence of freeing this web of 
objects; it’s the GC’s job. The GC’s design simplifies the problem of iden-
tifying this kind of web of objects as garbage. The application can stop ref-
erencing any entity when it’s done. The Garbage Collector will know if the 
entity is still reachable from live objects in the application. Any objects 
that cannot be reached from the application are all garbage.

The Garbage Collector runs in its own thread to remove unused memory 
from your program. It also compacts the managed heap each time it runs. 
Compacting the heap moves each live object in the managed heap so that 
the free space is located in one contiguous block of memory. Figure 2.1 
shows two snapshots of the heap before and after a garbage collection. All 
free memory is placed in one contiguous block after each GC operation.

As you’ve just learned, memory management (for the managed heap) is 
completely the responsibility of the Garbage Collector. Other system

Figure 2.1 The Garbage Collector not only removes unused memory, but it also 
moves other objects in memory to compact used memory and maximize 
free space.
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resources must be managed by developers: you and the users of your 
classes. Two mechanisms help developers control the lifetimes of unman-
aged resources: finalizers and the IDisposable interface. A finalizer is a 
defensive mechanism that ensures your objects always have a way to release 
unmanaged resources. Finalizers have many drawbacks, so you also have 
the IDisposable interface that provides a less intrusive way to return 
resources to the system in a timely manner.

Finalizers are called by the Garbage Collector. They will be called at some 
time after an object becomes garbage. You don’t know when that happens. 
All you know is that it happens sometime after your object cannot be 
reached. That is a big change from C++, and it has important ramifications 
for your designs. Experienced C++ programmers wrote classes that allo-
cated a critical resource in its constructor and released it in its destructor:

// Good C++, bad C#: 

class CriticalSection 

{

// Constructor acquires the system resource. 

public CriticalSection() 

{

EnterCriticalSection(); 

}

// Destructor releases system resource. 

~CriticalSection() 

{

ExitCriticalSection(); 

}

private void ExitCriticalSection() 

{

throw new NotImplementedException(); 

} 

private void EnterCriticalSection() 

{

throw new NotImplementedException(); 

}

}
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// usage: 

void Func() 

{

// The lifetime of s controls access to 

// the system resource.

CriticalSection s = new CriticalSection(); 

// Do work.

//...

// compiler generates call to destructor. 

// code exits critical section.

}

This common C++ idiom ensures that resource deallocation is exception-
proof. This doesn’t work in C#, however—at least, not in the same way. 
Deterministic finalization is not part of the .NET environment or the C# 
language. Trying to force the C++ idiom of deterministic finalization into 
the C# language won’t work well. In C#, the finalizer eventually executes, 
but it doesn’t execute in a timely fashion. In the previous example, the 
code eventually exits the critical section, but, in C#, it doesn’t exit the crit-
ical section when the function exits. That happens at some unknown time 
later. You don’t know when. You can’t know when. Finalizers are the only 
way to guarantee that unmanaged resources allocated by an object of a 
given type are eventually released. But finalizers execute at nondetermin-
istic times, so your design and coding practices should minimize the need 
for creating finalizers, and also minimize the need for executing the final-
izers that do exist. Throughout this chapter you’ll learn when you must 
create a finalizer, and how to minimize the negative impact of having one.

Relying on finalizers also introduces performance penalties. Objects that 
require finalization put a performance drag on the Garbage Collector. 
When the GC finds that an object is garbage but also requires finalization, 
it cannot remove that item from memory just yet. First, it calls the final-
izer. Finalizers are not executed by the same thread that collects garbage. 
Instead, the GC places each object that is ready for finalization in a queue 
and spawns yet another thread to execute all the finalizers. It continues with 
its business, removing other garbage from memory. On the next GC cycle, 
those objects that have been finalized are removed from memory. Figure 2.2 
shows three different GC operations and the difference in memory usage. 
Notice that the objects that require finalizers stay in memory for extra cycles.
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This might lead you to believe that an object that requires finalization lives 
in memory for one GC cycle more than necessary. But I simplified things. 
It’s more complicated than that because of another GC design decision. 
The .NET Garbage Collector defines generations to optimize its work. 
Generations help the GC identify the likeliest garbage candidates more 
quickly. Any object created since the last garbage collection operation is a 
generation 0 object. Any object that has survived one GC operation is a gen-
eration 1 object. Any object that has survived two or more GC operations 
is a generation 2 object. The purpose of generations is to separate local 
variables and objects that stay around for the life of the application. Gen-
eration 0 objects are mostly local variables. Member variables and global 
variables quickly enter generation 1 and eventually enter generation 2.

The GC optimizes its work by limiting how often it examines first- and 
second-generation objects. Every GC cycle examines generation 0 objects. 
Roughly 1 GC out of 10 examines the generation 0 and 1 objects. Roughly 
1 GC cycle out of 100 examines all objects. Think about finalization and 
its cost again: An object that requires finalization might stay in memory for 
nine GC cycles more than it would if it did not require finalization. If it still 
has not been finalized, it moves to generation 2. In generation 2, an object 
lives for an extra 100 GC cycles until the next generation 2 collection.

Figure 2.2 This sequence shows the effect of finalizers on the Garbage Collector. 
Objects stay in memory longer, and an extra thread needs to be spawned 
to run the Garbage Collector.
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I’ve spent some time now explaining why finalizers are not a good solution. 
But yet, you still need to free resources. You address these issues using the 
IDisposable interface and the standard dispose pattern. (See Item 17 later 
in this chapter.)

To close, remember that a managed environment, where the Garbage
 Collector takes the responsibility for memory management, is a big plus: 
Memory leaks and a host of other pointer-related problems are no longer 
your problem. Nonmemory resources force you to create finalizers to 
ensure proper cleanup of those nonmemory resources. Finalizers can have 
a serious impact on the performance of your program, but you must write 
them to avoid resource leaks. Implementing and using the IDisposable 
interface avoids the performance drain on the Garbage Collector that final-
izers introduce. The next section moves on to the specific items that will 
help you create programs that use this environment more effectively.

Item 12: Prefer Member Initializers to Assignment Statements

Classes often have more than one constructor. Over time, it’s easy for the 
member variables and the constructors to get out of sync. The best way to 
make sure this doesn’t happen is to initialize variables where you declare 
them instead of in the body of every constructor. You should utilize the ini-
tializer syntax for both static and instance variables.

Constructing member variables when you declare that variable is natural 
in C#. Just initialize the variable when you declare it:

public class MyClass 

{

// declare the collection, and initialize it. 

private List<string> labels = new List<string>();

}

Regardless of the number of constructors you eventually add to the 
MyClass type, labels will be initialized properly. The compiler generates 
code at the beginning of each constructor to execute all the initializers you 
have defined for your instance member variables. When you add a new 
constructor, labels get initialized. Similarly, if you add a new member vari-
able, you do not need to add initialization code to every constructor; ini-
tializing the variable where you define it is sufficient. Equally important, 
the initializers are added to the compiler-generated default constructor.
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The C# compiler creates a default constructor for your types whenever 
you don’t explicitly define any constructors.

Initializers are more than a convenient shortcut for statements in a con-
structor body. The statements generated by initializers are placed in object 
code before the body of your constructors. Initializers execute before the 
base class constructor for your type executes, and they are executed in the 
order the variables are declared in your class.

Using initializers is the simplest way to avoid uninitialized variables in your 
types, but it’s not perfect. In three cases, you should not use the initializer 
syntax. The first is when you are initializing the object to 0, or null. The 
default system initialization sets everything to 0 for you before any of your 
code executes. The system-generated 0 initialization is done at a very low 
level using the CPU instructions to set the entire block of memory to 0. 
Any extra 0 initialization on your part is superfluous. The C# compiler 
dutifully adds the extra instructions to set memory to 0 again. It’s not 
wrong—it’s just inefficient. In fact, when value types are involved, it’s very 
inefficient.

MyValType myVal1; // initialized to 0 

MyValType myVal2 = new MyValType(); // also 0

Both statements initialize the variable to all 0s. The first does so by setting 
the memory containing myVal1 to 0. The second uses the IL instruction 
initobj, which causes both a box and an unbox operation on the myVal2 
variable. This takes quite a bit of extra time (see Item 45).

The second inefficiency comes when you create multiple initializations for 
the same object. You should use the initializer syntax only for variables 
that receive the same initialization in all constructors. This version of 
MyClass has a path that creates two different List objects as part of its
 construction:

public class MyClass2 

{

// declare the collection, and initialize it. 

private List<string> labels = new List<string>();

MyClass2() 

{ 

}
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MyClass2(int size) 

{

labels = new List<string>(size); 

}

}

When you create a new MyClass2, specifying the size of the collection, you 
create two array lists. One is immediately garbage. The variable initializer 
executes before every constructor. The constructor body creates the second 
array list. The compiler creates this version of MyClass2, which you would 
never code by hand. (For the proper way to handle this situation, see 
Item 14.)

public class MyClass2 

{

// declare the collection, and initialize it. 

private List<string> labels;

MyClass2() 

{

labels = new List<string>(); 

}

MyClass2(int size) 

{

labels = new List<string>(); 

labels = new List<string>(size);

} 

}

You can run into the same situation whenever you use implicit properties 
(see Item 1). Your code does not have access to the compiler-generated 
backing field, so you can’t use an initializer for implicit properties. You 
have no choice but to initialize data coded in implicit properties using con-
structors. Using implicit properties is still an advantage when you don’t 
have any validation logic in your data setters. If you migrate from an 
implicit property to a named backing field with explicitly coded properties, 
you should update the initialization code to initialize the data members 
using initializers rather than constructor code. For those data elements 
where implicit properties are the right choice, Item 14 shows how to min-
imize any duplication when you initialize data held in implicit properties.
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The final reason to move initialization into the body of a constructor is to 
facilitate exception handling. You cannot wrap the initializers in a try
block. Any exceptions that might be generated during the construction of 
your member variables get propagated outside your object. You cannot 
attempt any recovery inside your class. You should move that initializa-
tion code into the body of your constructors so that you implement the 
proper recovery code to create your type and gracefully handle the excep-
tion (see Item 47).

Member initializers are the simplest way to ensure that the member vari-
ables in your type are initialized regardless of which constructor is called. 
The initializers are executed before each constructor you make for your 
type. Using this syntax means that you cannot forget to add the proper 
initialization when you add new constructors for a future release. Use ini-
tializers when all constructors create the member variable the same way; 
it’s simpler to read and easier to maintain.

Item 13: Use Proper Initialization for Static Class Members

You know that you should initialize static member variables in a type 
before you create any instances of that type. C# lets you use static initial-
izers and a static constructor for this purpose. A static constructor is a spe-
cial function that executes before any other methods, variables, or 
properties defined in that class are accessed for the first time. You use this 
function to initialize static variables, enforce the singleton pattern, or per-
form any other necessary work before a class is usable. You should not use 
your instance constructors, some special private function, or any other 
idiom to initialize static variables.

As with instance initialization, you can use the initializer syntax as an alter-
native to the static constructor. If you simply need to allocate a static mem-
ber, use the initializer syntax. When you have more complicated logic to 
initialize static member variables, create a static constructor.

Implementing the singleton pattern in C# is the most frequent use of a 
static constructor. Make your instance constructor private, and add an ini-
tializer:

public class MySingleton 

{

private static readonly MySingleton theOneAndOnly = 

new MySingleton();
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public static MySingleton TheOnly 

{

get { return theOneAndOnly; } 

}

private MySingleton() 

{ 

}

// remainder elided 

}

The singleton pattern can just as easily be written this way, in case you 
have more complicated logic to initialize the singleton:

public class MySingleton2 

{

private static readonly MySingleton2 theOneAndOnly;

static MySingleton2()

{

theOneAndOnly = new MySingleton2();

}

public static MySingleton2 TheOnly 

{

get { return theOneAndOnly; } 

}

private MySingleton2() 

{ 

}

// remainder elided 

}

As with instance initializers, the static initializers are called before any static 
constructors are called. And, yes, your static initializers execute before the 
base class’s static constructor.

The CLR calls your static constructor automatically before your type is 
first accessed in an application space (an AppDomain). You can define only
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one static constructor, and it must not take any arguments. Because static 
constructors are called by the CLR, you must be careful about exceptions 
generated in them. If you let an exception escape a static constructor, the 
CLR will terminate your program. The situation where the caller catches 
the exception is even more insidious. Code that tries to create the type will 
fail until that AppDomain is unloaded. The CLR could not initialize the 
type by executing the static constructor. It won’t try again, and yet the type 
did not get initialized correctly. Creating an object of that type (or any 
type derived from it) would not be well defined. Therefore, it is not 
allowed.

Exceptions are the most common reason to use the static constructor 
instead of static initializers. If you use static initializers, you cannot catch 
the exceptions yourself. With a static constructor, you can (see Item 47):

static MySingleton2() 

{

try 

{

theOneAndOnly = new MySingleton2(); 

} 

catch 

{

// Attempt recovery here. 

}

}

Static initializers and static constructors provide the cleanest, clearest way 
to initialize static members of your class. They are easy to read and easy to 
get correct. They were added to the language to specifically address the 
difficulties involved with initializing static members in other languages.

Item 14: Minimize Duplicate Initialization Logic

Writing constructors is often a repetitive task. Many developers write the 
first constructor and then copy and paste the code into other constructors, 
to satisfy the multiple overrides defined in the class interface. Hopefully, 
you’re not one of those. If you are, stop it. Veteran C++ programmers would 
factor the common algorithms into a private helper method. Stop that, 
too. When you find that multiple constructors contain the same logic, fac-
tor that logic into a common constructor instead. You’ll get the benefits of
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avoiding code duplication, and constructor initializers generate much 
more efficient object code. The C# compiler recognizes the constructor 
initializer as special syntax and removes the duplicated variable initializ-
ers and the duplicated base class constructor calls. The result is that your 
final object executes the minimum amount of code to properly initialize 
the object. You also write the least code by delegating responsibilities to a 
common constructor.

Constructor initializers allow one constructor to call another constructor. 
This example shows a simple usage:

public class MyClass 

{

// collection of data 

private List<ImportantData> coll; 

// Name of the instance: 

private string name;

public MyClass() :

this(0, "") 

{ 

}

public MyClass(int initialCount) :

this(initialCount, string.Empty) 

{ 

}

public MyClass(int initialCount, string name) 

{

coll = (initialCount > 0) ? 

new List<ImportantData>(initialCount) : 

new List<ImportantData>();

this.name = name; 

}

}

C# 4.0 adds default parameters, which you can use to minimize the dupli-
cated code in constructors. You could replace all the different construc-
tors for MyClass with one constructor that specifies default values for all 
or many of the values:
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public class MyClass 

{

// collection of data 

private List<ImportantData> coll; 

// Name of the instance: 

private string name;

// Needed to satisfy the new() constraint. 

public MyClass() :

this(0, string.Empty) 

{ 

}

public MyClass(int initialCount = 0, string name = "") 

{

coll = (initialCount > 0) ? 

new List<ImportantData>(initialCount) : 

new List<ImportantData>();

this.name = name; 

}

}

There are tradeoffs in choosing default parameters over using multiple 
overloads. (See Item 10.) Default parameters create more options for your 
users. This version of MyClass specifies the default value for both param-
eters. Users could specify different values for either or both parameters. 
Producing all the permutations using overloaded constructors would 
require four different constructor overloads: a parameterless constructor, 
one that asked for the initial count, one that asked for the name, and one 
that asked for both parameters. Add more members to your class, and the 
number of potential overloads grows as the number of permutations of all 
the parameters grows. That complexity makes default parameters a very 
powerful mechanism to minimize the number of potential overloads that 
you need to create.

Defining default values for all parameters to your type’s constructor means 
that user code will be valid when you call the new MyClass(). When you 
intend to support this concept, you should create an explicit parameterless 
constructor in that type, as shown in the example code above. While most 
code would default all parameters, generic classes that use the new() con-
straint will not accept a constructor with parameters that all have default
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values. To satisfy the new() constraint, a class must have an explicit para-
meterless constructor. Therefore, you should create one so that clients can 
use your type in generic classes or methods that enforce the new() con-
straint. That’s not to say that every type needs a parameterless construc-
tor. However, if you support one, make sure to add the code so that the 
parameterless constructor works in all cases, even when called from a 
generic class with a new() constraint.

You’ll note that the second constructor specifies "" for the default value 
on the name parameter, rather than the more customary string.Empty. 
That’s because string.Empty is not a compile-time constant. It is a static 
property defined in the string class. Because it is not a compile-time con-
stant, you cannot use it for the default value for a parameter.

However, using default parameters instead of overloads creates tighter cou-
pling between your class and all the clients that use it (see Item 10). In par-
ticular, the formal parameter name becomes part of the public interface, 
as does the current default value. Changing parameter values requires a 
recompile of all client code in order to pick up those changes. That makes 
overloaded constructors more resilient in the face of potential future 
changes. You can add new constructors, or change the default behavior for 
those constructors that don’t specify values without breaking client code.

C# versions 1 through 3 do not support default parameters, which is the 
preferred solution to this problem. You must write each constructor that 
you support as a separate function. With constructors, that can mean a lot 
of duplicated code. Use constructor chaining, by having one constructor 
invoke another constructor declared in the same class, instead of creating 
a common utility routine. Several inefficiencies are present in this alter-
native method of factoring out common constructor logic:

public class MyClass 

{

// collection of data 

private List<ImportantData> coll; 

// Name of the instance: 

private string name;

public MyClass() 

{

commonConstructor(0, ""); 

}
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public MyClass(int initialCount) 

{

commonConstructor(initialCount, ""); 

}

public MyClass(int initialCount, string Name) 

{

commonConstructor(initialCount, Name); 

}

private void commonConstructor(int count, 

string name)

{

coll = (count > 0) ? 

new List<ImportantData>(count) : 

new List<ImportantData>();

this.name = name; 

}

}

That version looks the same, but it generates far less efficient object code. 
The compiler adds code to perform several functions on your behalf in 
constructors. It adds statements for all variable initializers (see Item 12). 
It calls the base class constructor. When you write your own common util-
ity function, the compiler cannot factor out this duplicated code. The IL 
for the second version is the same as if you’d written this:

public class MyClass 

{

private List<ImportantData> coll; 

private string name;

public MyClass() 

{

// Instance Initializers would go here. 

object(); // Not legal, illustrative only. 

commonConstructor(0, "");

}

public MyClass(int initialCount) 

{
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// Instance Initializers would go here. 

object(); // Not legal, illustrative only. 

commonConstructor(initialCount, "");

}

public MyClass(int initialCount, string Name) 

{

// Instance Initializers would go here. 

object(); // Not legal, illustrative only. 

commonConstructor(initialCount, Name);

}

private void commonConstructor(int count, 

string name)

{

coll = (count > 0) ? 

new List<ImportantData>(count) : 

new List<ImportantData>();

this.name = name; 

}

}

If you could write the construction code for the first version the way the 
compiler sees it, you’d write this:

// Not legal, illustrates IL generated: 

public class MyClass 

{

private List<ImportantData> coll; 

private string name;

public MyClass() 

{

// No variable initializers here. 

// Call the third constructor, shown below. 

this(0, ""); // Not legal, illustrative only.

}

public MyClass(int initialCount) 

{

// No variable initializers here.
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// Call the third constructor, shown below. 

this(initialCount, "");

}

public MyClass(int initialCount, string Name) 

{

// Instance Initializers would go here. 

object(); // Not legal, illustrative only. 

coll = (initialCount > 0) ?

new List<ImportantData>(initialCount) : 

new List<ImportantData>();

name = Name; 

}

}

The difference is that the compiler does not generate multiple calls to the 
base class constructor, nor does it copy the instance variable initializers 
into each constructor body. The fact that the base class constructor is called 
only from the last constructor is also significant: You cannot include more 
than one constructor initializer in a constructor definition. You can dele-
gate to another constructor in this class using this(), or you can call a 
base class constructor using base(). You cannot do both.

Still don’t buy the case for constructor initializers? Then think about read-
only constants. In this example, the name of the object should not change 
during its lifetime. This means that you should make it read-only. That 
causes the common utility function to generate compiler errors:

public class MyClass 

{

// collection of data 

private List<ImportantData> coll; 

// Number for this instance 

private int counter; 

// Name of the instance: 

private readonly string name;

public MyClass() 

{

commonConstructor(0, string.Empty); 

}
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public MyClass(int initialCount) 

{

commonConstructor(initialCount, string.Empty); 

}

public MyClass(int initialCount, string Name) 

{

commonConstructor(initialCount, Name); 

}

private void commonConstructor(int count, 

string name)

{

coll = (count > 0) ? 

new List<ImportantData>(count) : 

new List<ImportantData>();

// ERROR changing the name outside of a constructor. 

this.name = name;

} 

}

C++ programmers just live with this and initialize Name in all construc-
tors, or they cast away constness in the utility routine. C#’s constructor 
initializers provide a better alternative. All but the most trivial classes con-
tain more than one constructor. Their job is to initialize all the members 
of an object. By their very nature, these functions have similar or, ideally, 
shared logic. Use the C# constructor initializer to factor out those com-
mon algorithms so that you write them once and they execute once.

Both default parameters and overloads have their place. In general, you 
should prefer default values to overloaded constructors. After all, if you 
are letting client developers specify parameter values at all, your con-
structor must be capable of handling any values that users specify. Your 
original default values should always be reasonable and shouldn’t gener-
ate exceptions. Therefore, even though changing the default parameter 
values is technically a breaking change, it shouldn’t be observable to your 
clients. Their code will still use the original values, and those original val-
ues should still produce reasonable behavior. That minimizes the poten-
tial hazards of using default values.

This is the last item about object initialization in C#. That makes it a good 
time to review the entire sequence of events for constructing an instance
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of a type. You should understand both the order of operations and the 
default initialization of an object. You should strive to initialize every 
member variable exactly once during construction. The best way for you 
to accomplish this is to initialize values as early as possible. Here is the 
order of operations for constructing the first instance of a type:

1. Static variable storage is set to 0.
2. Static variable initializers execute.
3. Static constructors for the base class execute.
4. The static constructor executes.
5. Instance variable storage is set to 0.
6. Instance variable initializers execute.
7. The appropriate base class instance constructor executes.
8. The instance constructor executes.

Subsequent instances of the same type start at step 5 because the class ini-
tializers execute only once. Also, steps 6 and 7 are optimized so that con-
structor initializers cause the compiler to remove duplicate instructions.

The C# language compiler guarantees that everything gets initialized in 
some way when an object gets created. At a minimum, you are guaranteed 
that all memory your object uses has been set to 0 when an instance is cre-
ated. This is true for both static members and instance members. Your goal 
is to make sure that you initialize all the values the way you want and exe-
cute that initialization code only once. Use initializers to initialize simple 
resources. Use constructors to initialize members that require more sophis-
ticated logic. Also factor calls to other constructors, to minimize duplication.

Item 15: Utilize using and try/finally for Resource Cleanup

Types that use unmanaged system resources should be explicitly released 
using the Dispose() method of the IDisposable interface. The rules of the 
.NET environment make that the responsibility of the code that uses the 
type, not the responsibility of the type or the system. Therefore, anytime 
you use types that have a Dispose() method, it’s your responsibility to 
release those resources by calling Dispose(). The best way to ensure that 
Dispose() always gets called is to utilize the using statement or a
try/finally block.

All types that own unmanaged resources implement the IDisposable inter-
face. In addition, they defensively create a finalizer for those times when 
you forget to dispose properly. If you forget to dispose of those items, those
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nonmemory resources are freed later, when finalizers get their chance to 
execute. All those objects then stay in memory that much longer, and your 
application becomes a slowly executing resource hog.

Luckily for you, the C# language designers knew that explicitly releasing 
resources would be a common task. They added keywords to the language 
that make it easy.

Suppose you wrote this code:

public void ExecuteCommand(string connString, 

string commandString)

{ 

SqlConnection myConnection = new SqlConnection( 

connString);

SqlCommand mySqlCommand = new SqlCommand(commandString, 

myConnection);

myConnection.Open(); 

mySqlCommand.ExecuteNonQuery();

}

Two disposable objects are not properly cleaned up in this example:
 SqlConnection and SqlCommand. Both of these objects remain in mem-
ory until their finalizers are called. (Both of these classes inherit their final-
izer from System.ComponentModel.Component.)

You fix this problem by calling Dispose when you are finished with the 
command and the connection:

public void ExecuteCommand(string connString, 

string commandString)

{

SqlConnection myConnection = new SqlConnection( 

connString);

SqlCommand mySqlCommand = new SqlCommand(commandString, 

myConnection);

myConnection.Open(); 

mySqlCommand.ExecuteNonQuery();

mySqlCommand.Dispose(); 

myConnection.Dispose();

}
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That’s fine, unless any exceptions get thrown while the SQL command exe-
cutes. In that case, your calls to Dispose() never happen. The using state-
ment ensures that Dispose() is called. You allocate an object inside a using
statement, and the C# compiler generates a try/finally block around
each object:

public void ExecuteCommand(string connString, 

string commandString)

{

using (SqlConnection myConnection = new

SqlConnection(connString)) 

{

using (SqlCommand mySqlCommand = new 

SqlCommand(commandString, 

myConnection))

{

myConnection.Open(); 

mySqlCommand.ExecuteNonQuery();

} 

}

}

Whenever you use one Disposable object in a function, the using clause
is the simplest method to use to ensure that objects get disposed of prop-
erly. The using statement generates a try/finally block around the 
object being allocated. These two blocks generate exactly the same IL:

SqlConnection myConnection = null;

// Example Using clause: 

using (myConnection = new SqlConnection(connString)) 

{

myConnection.Open(); 

}

// example Try / Catch block: 

try 

{

myConnection = new SqlConnection(connString); 

myConnection.Open();

}
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finally 

{

myConnection.Dispose(); 

}

If you use the using statement with a variable of a type that does not sup-
port the IDisposable interface, the C# compiler generates an error. For 
example:

// Does not compile: 

// String is sealed, and does not support IDisposable. 

using (string msg = "This is a message")

Console.WriteLine(msg);

The using statement works only if the compile-time type supports the 
IDisposable interface. You cannot use it with arbitrary objects:

// Does not compile. 

// Object does not support IDisposable. 

using (object obj = Factory.CreateResource())

Console.WriteLine(obj.ToString());

A quick defensive as clause is all you need to safely dispose of objects that 
might or might not implement IDisposable:

// The correct fix. 

// Object may or may not support IDisposable.

object obj = Factory.CreateResource();

using (obj as IDisposable) 

Console.WriteLine(obj.ToString());

If obj implements IDisposable, the using statement generates the 
cleanup code. If not, the using statement degenerates to using(null), 
which is safe but doesn’t do anything. If you’re not sure whether you 
should wrap an object in a using block, err on the side of safety: Assume 
that it does and wrap it in the using clause shown earlier.

That covers the simple case: Whenever you use one disposable object that 
is local to a method, wrap that one object in a using statement. Now you 
can look at a few more complicated usages. Two different objects need to 
be disposed in that first example: the connection and the command. My 
example creates two different using statements, one wrapping each of 
the two objects that need to be disposed. Each using statement gener-
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ates a different try/finally block. In effect, you have written this
 construct:

public void ExecuteCommand(string connString, 

string commandString)

{ 

SqlConnection myConnection = null;

SqlCommand mySqlCommand = null; 

try 

{

myConnection = new SqlConnection(connString); 

try 

{

mySqlCommand = new SqlCommand(commandString, 

myConnection);

myConnection.Open(); 

mySqlCommand.ExecuteNonQuery();

} 

finally 

{

if (mySqlCommand != null) 

mySqlCommand.Dispose();

} 

} 

finally 

{

if (myConnection != null) 

myConnection.Dispose();

} 

}

Every using statement creates a new nested try/finally block. Thank-
fully, it’s rare that you’ll allocate two different objects that both implement 
IDisposable in one method. That being the case, it’s fine to leave it as is, 
because it does work. However, I find that an ugly construct, so when I 
allocate multiple objects that implement IDisposable, I prefer to write my 
own try/finally blocks:

public void ExecuteCommand(string connString, 

string commandString)
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{

SqlConnection myConnection = null;

SqlCommand mySqlCommand = null; 

try 

{

myConnection = new SqlConnection(connString); 

mySqlCommand = new SqlCommand(commandString,

myConnection);

myConnection.Open(); 

mySqlCommand.ExecuteNonQuery();

} 

finally 

{

if (mySqlCommand != null) 

mySqlCommand.Dispose();

if (myConnection != null) 

myConnection.Dispose();

} 

}

One reason to just leave well enough alone is that you can easily get too 
cute and try to build one using clause with as statements:

public void ExecuteCommand(string connString, 

string commandString)

{

// Bad idea. Potential resource leak lurks! 

SqlConnection myConnection =

new SqlConnection(connString);

SqlCommand mySqlCommand = new SqlCommand(commandString,

myConnection); 

using (myConnection as IDisposable) 

using (mySqlCommand as IDisposable) 

{

myConnection.Open(); 

mySqlCommand.ExecuteNonQuery();

} 

}

It looks cleaner, but it has a subtle bug. The SqlConnection object never 
gets disposed if the SqlCommand() constructor throws an exception.
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myConnection has already been created, but the code has not entered the
using block when the SqlCommand constructor executes. Without the 
constructor inside the using block, the call to Dispose gets skipped. You 
must make sure that any objects that implement IDisposable are allocated 
inside the scope of a using block or a try block. Otherwise, resource leaks 
can occur.

So far, you’ve handled the two most obvious cases. Whenever you allocate 
one disposable object in a method, the using statement is the best way to 
ensure that the resources you’ve allocated are freed in all cases. When you 
allocate multiple objects in the same method, create multiple using blocks
or write your own single try/finally block.

There is one more nuance to freeing disposable objects. Some types sup-
port both a Dispose method and a Close method to free resources.
 SqlConnection is one of those classes. You could close SqlConnection like 
this:

public void ExecuteCommand(string connString, 

string commandString)

{ 

SqlConnection myConnection = null; 

try 

{

myConnection = new SqlConnection(connString); 

SqlCommand mySqlCommand = new SqlCommand

(commandString, myConnection);

myConnection.Open(); 

mySqlCommand.ExecuteNonQuery();

} 

finally 

{

if (myConnection != null) 

myConnection.Close();

} 

}

This version does close the connection, but that’s not exactly the same as 
disposing of it. The Dispose method does more than free resources: It also 
notifies the Garbage Collector that the object no longer needs to be final-
ized. Dispose calls GC.SuppressFinalize(). Close typically does not. As a
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result, the object remains in the finalization queue, even though finaliza-
tion is not needed. If you have the choice, Dispose() is better than Close(). 
You’ll learn all the gory details in Item 18.

Dispose() does not remove objects from memory. It is a hook to let objects 
release unmanaged resources. That means you can get into trouble by 
disposing of objects that are still in use. The examples above use
 SQLConnection. The SQLConnection’s Dispose() method closes the con-
nection to the database. After you dispose of the connection, the
 SQLConnection object is still in memory, but it is no longer connected to 
a database. It’s in memory, but it’s not useful. Do not dispose of objects 
that are still being referenced elsewhere in your program.

In some ways, resource management can be more difficult in C# than it 
was in C++. You can’t rely on deterministic finalization to clean up every 
resource you use. But a garbage-collected environment really is much simpler 
for you. The vast majority of the types you make use of do not implement 
IDisposable. Less than 100 classes in the .NET Framework implement 
IDisposable—that’s out of more than 1,500 types. When you use the ones 
that do implement IDisposable, remember to dispose of them in all cases. 
You should wrap those objects in using clauses or try/finally blocks. 
Whichever you use, make sure that objects get disposed properly all the 
time, every time.

Item 16: Avoid Creating Unnecessary Objects

The Garbage Collector does an excellent job of managing memory for you, 
and it removes unused objects in a very efficient manner. But no matter 
how you look at it, allocating and destroying a heap-based object takes 
more processor time than not allocating and not destroying a heap-based 
object. You can introduce serious performance drains on your program 
by creating an excessive number of reference objects that are local to your 
methods.

So don’t overwork the Garbage Collector. You can follow some simple 
techniques to minimize the amount of work that the Garbage Collector 
needs to do on your program’s behalf. All reference types, even local vari-
ables, are allocated on the heap. Every local variable of a reference type 
becomes garbage as soon as that function exits. One very common bad 
practice is to allocate GDI objects in a Windows paint handler:
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// Sample one 

protected override void OnPaint(PaintEventArgs e) 

{

// Bad. Created the same font every paint event. 

using (Font MyFont = new Font("Arial", 10.0f)) 

{

e.Graphics.DrawString(DateTime.Now.ToString(), 

MyFont, Brushes.Black, new PointF(0, 0));

} 

base.OnPaint(e);

}

OnPaint() gets called frequently. Every time it gets called, you create 
another Font object that contains the exact same settings. The Garbage 
Collector needs to clean those up for you every time. That’s incredibly 
inefficient.

Instead, promote the Font object from a local variable to a member vari-
able. Reuse the same font each time you paint the window:

private readonly Font myFont = 

new Font("Arial", 10.0f);

protected override void OnPaint(PaintEventArgs e) 

{

e.Graphics.DrawString(DateTime.Now.ToString(), 

myFont, Brushes.Black, new PointF(0, 0));

base.OnPaint(e); 

}

Your program no longer creates garbage with every paint event. The 
Garbage Collector does less work. Your program runs just a little faster. 
When you elevate a local variable, such as a font, that implements
 IDisposable to a member variable, you need to implement IDisposable in 
your class. Item 18 explains how to properly do just that.

You should promote local variables to member variables when they are 
reference types (value types don’t matter), and they will be used in routines 
that are called very frequently. The font in the paint routine makes an 
excellent example. Only local variables in routines that are frequently 
accessed are good candidates. Infrequently called routines are not. You’re 
trying to avoid creating the same objects repeatedly, not turn every local 
variable into a member variable.
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The static property Brushes.Black used earlier illustrates another technique 
that you should use to avoid repeatedly allocating similar objects. Create 
static member variables for commonly used instances of the reference 
types you need. Consider the black brush used earlier as an example. Every 
time you need to draw something in your window using the color black, 
you need a black brush. If you allocate a new one every time you draw any-
thing, you create and destroy a huge number of black brushes during the 
course of a program. The first approach of creating a black brush as a 
member of each of your types helps, but it doesn’t go far enough. Pro-
grams might create dozens of windows and controls, and would create 
dozens of black brushes. The .NET Framework designers anticipated this 
and created a single black brush for you to reuse whenever you need it. 
The Brushes class contains a number of static Brush objects, each with a 
different common color. Internally, the Brushes class uses a lazy evalua-
tion algorithm to create only those brushes you request. A simplified 
implementation looks like this:

private static Brush blackBrush; 

public static Brush Black 

{

get 

{

if (blackBrush == null) 

blackBrush = new SolidBrush(Color.Black);

return blackBrush; 

}

}

The first time you request a black brush, the Brushes class creates it. The 
Brushes class keeps a reference to the single black brush and returns that 
same handle whenever you request it again. The end result is that you cre-
ate one black brush and reuse it forever. Furthermore, if your application 
does not need a particular resource—say, the lime green brush—it never 
gets created. The framework provides a way to limit the objects created to 
the minimum set you need to accomplish your goals. Copy that technique 
in your programs.

You’ve learned two techniques to minimize the number of allocations your 
program performs as it goes about its business. You can promote often-
used local variables to member variables. You can provide a class that stores 
singleton objects that represent common instances of a given type. The
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last technique involves building the final value for immutable types. The 
System.String class is immutable: After you construct a string, the con-
tents of that string cannot be modified. Whenever you write code that 
appears to modify the contents of a string, you are actually creating a new 
string object and leaving the old string object as garbage. This seemingly 
innocent practice:

string msg = "Hello, "; 

msg += thisUser.Name; 

msg += ". Today is "; 

msg += System.DateTime.Now.ToString();

is just as inefficient as if you had written this:

string msg = "Hello, "; 

// Not legal, for illustration only: 

string tmp1 = new String(msg + thisUser.Name); 

msg = tmp1; // "Hello " is garbage. 

string tmp2 = new String(msg + ". Today is "); 

msg = tmp2; // "Hello <user>" is garbage. 

string tmp3 = new String(msg + DateTime.Now.ToString()); 

msg = tmp3; // "Hello <user>. Today is " is garbage.

The strings tmp1, tmp2, and tmp3, and the originally constructed msg 
("Hello"), are all garbage. The += method on the string class creates a new 
string object and returns that string. It does not modify the existing string 
by concatenating the characters to the original storage. For simple con-
structs such as the previous one, you should use the string.Format() 
method:

string msg = string.Format("Hello, {0}. Today is {1}",

thisUser.Name, DateTime.Now.ToString());

For more complicated string operations, you can use the StringBuilder 
class:

StringBuilder msg = new StringBuilder("Hello, "); 

msg.Append(thisUser.Name); 

msg.Append(". Today is "); 

msg.Append(DateTime.Now.ToString()); 

string finalMsg = msg.ToString();

StringBuilder is the mutable string class used to build an immutable string 
object. It provides facilities for mutable strings that let you create and
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modify text data before you construct an immutable string object. Use 
StringBuilder to create the final version of a string object. More impor-
tantly, learn from that design idiom. When your designs call for immutable 
types (see Item 20), consider creating builder objects to facilitate the multi-
phase construction of the final object. That provides a way for users of 
your class to construct an object in steps, yet maintain the immutability of 
your type.

The Garbage Collector does an efficient job of managing the memory that 
your application uses. But remember that creating and destroying heap 
objects still takes time. Avoid creating excessive objects; don’t create what 
you don’t need. Also avoid creating multiple objects of reference types in 
local functions. Instead, consider promoting local variables to member 
variables, or create static objects of the most common instances of your 
types. Finally, consider creating mutable builder classes for immutable 
types.

Item 17: Implement the Standard Dispose Pattern

We’ve discussed the importance of disposing of objects that hold unman-
aged resources. Now it’s time to cover how to write your own resource-
management code when you create types that contain resources other than 
memory. A standard pattern is used throughout the .NET Framework for 
disposing of unmanaged resources. The users of your type will expect you 
to follow this standard pattern. The standard dispose idiom frees your 
unmanaged resources using the IDisposable interface when clients remem-
ber, and it uses the finalizer defensively when clients forget. It works with 
the Garbage Collector to ensure that your objects pay the performance 
penalty associated with finalizers only when necessary. This is the right way 
to handle unmanaged resources, so it pays to understand it thoroughly.

The root base class in the class hierarchy should implement the IDisposable 
interface to free resources. This type should also add a finalizer as a defen-
sive mechanism. Both of these routines delegate the work of freeing 
resources to a virtual method that derived classes can override for their 
own resource-management needs. The derived classes need to override the 
virtual method only when the derived class must free its own resources 
and it must remember to call the base class version of the function.

To begin, your class must have a finalizer if it uses unmanaged resources. 
You should not rely on clients to always call the Dispose() method. You’ll
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leak resources when they forget. It’s their fault for not calling Dispose, but 
you’ll get the blame. The only way you can guarantee that unmanaged 
resources get freed properly is to create a finalizer. So create one.

When the Garbage Collector runs, it immediately removes from memory 
any garbage objects that do not have finalizers. All objects that have final-
izers remain in memory. These objects are added to a finalization queue, 
and the Garbage Collector spawns a new thread to run the finalizers on 
those objects. After the finalizer thread has finished its work, the garbage 
objects can be removed from memory. Objects that need finalization stay 
in memory for far longer than objects without a finalizer. But you have no 
choice. If you’re going to be defensive, you must write a finalizer when 
your type holds unmanaged resources. But don’t worry about perform-
ance just yet. The next steps ensure that it’s easier for clients to avoid the 
performance penalty associated with finalization.

Implementing IDisposable is the standard way to inform users and the 
runtime system that your objects hold resources that must be released in 
a timely manner. The IDisposable interface contains just one method:

public interface IDisposable 

{

void Dispose(); 

}

The implementation of your IDisposable.Dispose() method is responsi-
ble for four tasks:

1. Freeing all unmanaged resources.
2. Freeing all managed resources (this includes unhooking events).
3. Setting a state flag to indicate that the object has been disposed. You 

need to check this state and throw ObjectDisposed exceptions in your 
public methods, if any get called after disposing of an object.

4. Suppressing finalization. You call GC.SuppressFinalize(this) to 
accomplish this task.

You accomplish two things by implementing IDisposable: You provide the 
mechanism for clients to release all managed resources that you hold in a 
timely fashion, and you give clients a standard way to release all unman-
aged resources. That’s quite an improvement. After you’ve implemented 
IDisposable in your type, clients can avoid the finalization cost. Your class 
is a reasonably well-behaved member of the .NET community.
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But there are still holes in the mechanism you’ve created. How does a 
derived class clean up its resources and still let a base class clean up as well? 
If derived classes override finalize or add their own implementation of 
IDisposable, those methods must call the base class; otherwise, the base 
class doesn’t clean up properly. Also, finalize and Dispose share some of the 
same responsibilities: You have almost certainly duplicated code between 
the finalize method and the Dispose method. As you’ll learn in Item 23, 
overriding interface functions does not work the way you’d expect. The 
third method in the standard Dispose pattern, a protected virtual helper 
function, factors out these common tasks and adds a hook for derived 
classes to free resources they allocate. The base class contains the code for 
the core interface. The virtual function provides the hook for derived 
classes to clean up resources in response to Dispose() or finalization:

protected virtual void Dispose(bool isDisposing)

This overloaded method does the work necessary to support both finalize 
and Dispose, and because it is virtual, it provides an entry point for all 
derived classes. Derived classes can override this method, provide the 
proper implementation to clean up their resources, and call the base class 
version. You clean up managed and unmanaged resources when isDisposing 
is true, and you clean up only unmanaged resources when isDisposing is 
false. In both cases, call the base class’s Dispose(bool) method to let it clean 
up its own resources.

Here is a short sample that shows the framework of code you supply when 
you implement this pattern. The MyResourceHog class shows the code to 
implement IDisposable and create the virtual Dispose method:

public class MyResourceHog : IDisposable 

{

// Flag for already disposed 

private bool alreadyDisposed = false;

// Implementation of IDisposable. 

// Call the virtual Dispose method. 

// Suppress Finalization. 

public void Dispose() 

{

Dispose(true);

GC.SuppressFinalize(this);

}
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// Virtual Dispose method 

protected virtual void Dispose(bool isDisposing) 

{

// Don't dispose more than once. 

if (alreadyDisposed)

return; 

if (isDisposing) 

{

// elided: free managed resources here. 

} 

// elided: free unmanaged resources here. 

// Set disposed flag: 

alreadyDisposed = true;

}

public void ExampleMethod() 

{

if (alreadyDisposed) 

throw new ObjectDisposedException(

"MyResourceHog",

"Called Example Method on Disposed object");

// remainder elided. 

}

}

If a derived class needs to perform additional cleanup, it implements the 
protected Dispose method:

public class DerivedResourceHog : MyResourceHog 

{

// Have its own disposed flag. 

private bool disposed = false;

protected override void Dispose(bool isDisposing) 

{

// Don't dispose more than once. 

if (disposed)

return; 

if (isDisposing) 

{

// TODO: free managed resources here.
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} 

// TODO: free unmanaged resources here.

// Let the base class free its resources. 

// Base class is responsible for calling 

// GC.SuppressFinalize( ) 

base.Dispose(isDisposing);

// Set derived class disposed flag: 

disposed = true;

} 

}

Notice that both the base class and the derived class contain a flag for the 
disposed state of the object. This is purely defensive. Duplicating the flag 
encapsulates any possible mistakes made while disposing of an object to 
only the one type, not all types that make up an object.

You need to write Dispose and finalize defensively. Disposing of objects 
can happen in any order. You will encounter cases in which one of the 
member objects in your type is already disposed of before your Dispose() 
method gets called. You should not view that as a problem because the 
Dispose() method can be called multiple times. If it’s called on an object 
that has already been disposed of, it does nothing. Finalizers have similar 
rules. Any object that you reference is still in memory, so you don’t need 
to check null references. However, any object that you reference might be 
disposed of. It might also have already been finalized.

You’ll notice that neither MyResourceHog nor DerivedResourceHog con-
tain a finalizer. The example code I wrote does not directly contain any 
unmanaged resources. Therefore, a finalizer is not needed. That means the 
example code never calls Dispose(false). That’s the correct pattern. Unless 
your class directly contains unmanaged resources, you should not imple-
ment a finalizer. Only those classes that directly contain an unmanaged 
resource should implement the finalizer and add that overhead. Even if 
it’s never called, the presence of a finalizer does introduce a rather large 
performance penalty for your types. Unless your type needs the finalizer, 
don’t add it. However, you should still implement the pattern correctly so 
that if any derived classes do add unmanaged resources, they can add the 
finalizer, and implement Dispose(bool) in such a way that unmanaged 
resources are handled correctly.
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This brings me to the most important recommendation for any method 
associated with disposal or cleanup: You should be releasing resources only. 
Do not perform any other processing during a dispose method. You can 
introduce serious complications to object lifetimes by performing other 
processing in your Dispose or finalize methods. Objects are born when you 
construct them, and they die when the Garbage Collector reclaims them. 
You can consider them comatose when your program can no longer access 
them. If you can’t reach an object, you can’t call any of its methods. For all 
intents and purposes, it is dead. But objects that have finalizers get to breathe 
a last breath before they are declared dead. Finalizers should do nothing 
but clean up unmanaged resources. If a finalizer somehow makes an object 
reachable again, it has been resurrected. It’s alive and not well, even though 
it has awoken from a comatose state. Here’s an obvious example:

public class BadClass 

{

// Store a reference to a global object: 

private static readonly List<BadClass> finalizedList =

new List<BadClass>(); 

private string msg;

public BadClass(string msg) 

{

// cache the reference: 

msg = (string)msg.Clone();

}

~BadClass() 

{

// Add this object to the list. 

// This object is reachable, no 

// longer garbage. It's Back! 

finalizedList.Add(this);

} 

}

When a BadClass object executes its finalizer, it puts a reference to itself on 
a global list. It has just made itself reachable. It’s alive again! The number 
of problems you’ve just introduced would make anyone cringe. The object 
has been finalized, so the Garbage Collector now believes there is no need
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to call its finalizer again. If you actually need to finalize a resurrected 
object, it won’t happen. Second, some of your resources might not be avail-
able. The GC will not remove from memory any objects that are reach-
able only by objects in the finalizer queue, but it might have already 
finalized them. If so, they are almost certainly no longer usable. Although 
the members that BadClass owns are still in memory, they will have likely 
been disposed of or finalized. There is no way in the language that you can 
control the order of finalization. You cannot make this kind of construct 
work reliably. Don’t try.

I’ve never seen code that has resurrected objects in such an obvious fash-
ion, except as an academic exercise. But I have seen code in which the final-
izer attempts to do some real work and ends up bringing itself back to life 
when some function that the finalizer calls saves a reference to the object. 
The moral is to look very carefully at any code in a finalizer and, by exten-
sion, both Dispose methods. If that code is doing anything other than 
releasing resources, look again. Those actions likely will cause bugs in your 
program in the future. Remove those actions, and make sure that finaliz-
ers and Dispose() methods release resources and do nothing else.

In a managed environment, you do not need to write a finalizer for every 
type you create; you do it only for types that store unmanaged types or 
when your type contains members that implement IDisposable. Even if 
you need only the Disposable interface, not a finalizer, implement the 
entire pattern. Otherwise, you limit your derived classes by complicating 
their implementation of the standard Dispose idiom. Follow the standard 
Dispose idiom I’ve described. That will make life easier for you, for the 
users of your class, and for those who create derived classes from your 
types.

Item 18: Distinguish Between Value Types and Reference Types

Value types or reference types? Structs or classes? When should you use 
each? This isn’t C++, in which you define all types as value types and can 
create references to them. This isn’t Java, in which everything is a refer-
ence type (unless you are one of the language designers). You must decide 
how all instances of your type will behave when you create it. It’s an impor-
tant decision to get right the first time. You must live with the conse-
quences of your decision because changing later can cause quite a bit of 
code to break in subtle ways. It’s a simple matter of choosing the struct
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or class keyword when you create the type, but it’s much more work to 
update all the clients using your type if you change it later.

It’s not as simple as preferring one over the other. The right choice depends 
on how you expect to use the new type. Value types are not polymorphic. 
They are better suited to storing the data that your application manipu-
lates. Reference types can be polymorphic and should be used to define 
the behavior of your application. Consider the expected responsibilities 
of your new type, and from those responsibilities, decide which type to 
create. Structs store data. Classes define behavior.

The distinction between value types and reference types was added to 
.NET and C# because of common problems that occurred in C++ and 
Java. In C++, all parameters and return values were passed by value. Pass-
ing by value is very efficient, but it suffers from one problem: partial copy-
ing (sometimes called slicing the object). If you use a derived object where 
a base object is expected, only the base portion of the object gets copied. 
You have effectively lost all knowledge that a derived object was ever there. 
Even calls to virtual functions are sent to the base class version.

The Java language responded by more or less removing value types from 
the language. All user-defined types are reference types. In the Java lan-
guage, all parameters and return values are passed by reference. This strat-
egy has the advantage of being consistent, but it’s a drain on performance. 
Let’s face it, some types are not polymorphic—they were not intended to 
be. Java programmers pay a heap allocation and an eventual garbage col-
lection for every variable. They also pay an extra time cost to dereference 
every variable. All variables are references. In C#, you declare whether a 
new type should be a value type or a reference type using the struct or
class keywords. Value types should be small, lightweight types. Reference 
types form your class hierarchy. This section examines different uses for a 
type so that you understand all the distinctions between value types and 
reference types.

To start, this type is used as the return value from a method:

private MyData myData; 

public MyData Foo() 

{

return myData; 

}
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// call it: 

MyData v = Foo(); 

TotalSum += v.Value;

If MyData is a value type, the return value gets copied into the storage for
v. However, if MyData is a reference type, you’ve exported a reference to an 
internal variable. You’ve violated the principle of encapsulation (see Item 26).

Or, consider this variant:

public MyData Foo2() 

{

return myData.CreateCopy(); 

}

// call it: 

MyData v = Foo(); 

TotalSum += v.Value;

Now, v is a copy of the original myData. As a reference type, two objects 
are created on the heap. You don’t have the problem of exposing internal 
data. Instead, you’ve created an extra object on the heap. If v is a local vari-
able, it quickly becomes garbage and Clone forces you to use runtime type 
checking. All in all, it’s inefficient.

Types that are used to export data through public methods and properties 
should be value types. But that’s not to say that every type returned from 
a public member should be a value type. There was an assumption in the 
earlier code snippet that MyData stores values. Its responsibility is to store 
those values.

But, consider this alternative code snippet:

private MyType myType; 

public IMyInterface Foo3() 

{

return myType as IMyInterface; 

}

// call it: 

IMyInterface iMe = Foo3(); 

iMe.DoWork();
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The myType variable is still returned from the Foo3 method. But this time, 
instead of accessing the data inside the returned value, the object is 
accessed to invoke a method through a defined interface. You’re accessing 
the MyType object not for its data contents, but for its behavior. That 
behavior is expressed through the IMyInterface, which can be imple-
mented by multiple different types. For this example, MyType should be 
a reference type, not a value type. MyType’s responsibilities revolve around 
its behavior, not its data members.

That simple code snippet starts to show you the distinction: Value types 
store values, and reference types define behavior. Now look a little deeper 
at how those types are stored in memory and the performance consider-
ations related to the storage models. Consider this class:

public class C 

{

private MyType a = new MyType(); 

private MyType b = new MyType();

// Remaining implementation removed. 

}

C cThing = new C();

How many objects are created? How big are they? It depends. If MyType 
is a value type, you’ve made one allocation. The size of that allocation is 
twice the size of MyType. However, if MyType is a reference type, you’ve 
made three allocations: one for the C object, which is 8 bytes (assuming 
32-bit pointers), and two more for each of the MyType objects that are 
contained in a C object. The difference results because value types are 
stored inline in an object, whereas reference types are not. Each variable of 
a reference type holds a reference, and the storage requires extra allocation.

To drive this point home, consider this allocation:

MyType[] arrayOfTypes = new MyType[100];

If MyType is a value type, one allocation of 100 times the size of a MyType 
object occurs. However, if MyType is a reference type, one allocation just 
occurred. Every element of the array is null. When you initialize each ele-
ment in the array, you will have performed 101 allocations—and 101 allo-
cations take more time than 1 allocation. Allocating a large number of
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reference types fragments the heap and slows you down. If you are creat-
ing types that are meant to store data values, value types are the way to go.

The decision to make a value type or a reference type is an important one. 
It is a far-reaching change to turn a value type into a class type. Consider 
this type:

public struct Employee 

{

// Properties elided 

public string Position 

{

get; 

set;

}

public decimal CurrentPayAmount 

{

get; 

set;

}

public void Pay(BankAccount b) 

{

b.Balance += CurrentPayAmount; 

}

}

This fairly simple type contains one method to let you pay your employ-
ees. Time passes, and the system runs fairly well. Then you decide that 
there are different classes of Employees: Salespeople get commissions, and 
managers get bonuses. You decide to change the Employee type into a class:

public class Employee2 

{

// Properties elided 

public string Position 

{

get; 

set;

}
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public decimal CurrentPayAmount 

{

get; 

set;

}

public virtual void Pay(BankAccount b) 

{

b.Balance += CurrentPayAmount; 

}

}

That breaks much of the existing code that uses your customer struct. 
Return by value becomes return by reference. Parameters that were passed 
by value are now passed by reference. The behavior of this little snippet 
changed drastically:

Employee e1 = Employees.Find(e => e.Position == "CEO"); 

BankAccount CEOBankAccount = new BankAccount(); 

decimal Bonus = 10000; 

e1.CurrentPayAmount += Bonus; // Add one time bonus. 

e1.Pay(CEOBankAccount);

What was a one-time bump in pay to add a bonus just became a perma-
nent raise. Where a copy by value had been used, a reference is now in 
place. The compiler happily makes the changes for you. The CEO is prob-
ably happy, too. The CFO, on the other hand, will report the bug. You just 
can’t change your mind about value and reference types after the fact: It 
changes behavior.

This problem occurred because the Employee type no longer follows the 
guidelines for a value type. In addition to storing the data elements that 
define an employee, you’ve added responsibilities—in this example, pay-
ing the employee. Responsibilities are the domain of class types. Classes 
can define polymorphic implementations of common responsibilities eas-
ily; structs cannot and should be limited to storing values.

The documentation for .NET recommends that you consider the size of a 
type as a determining factor between value types and reference types. In 
reality, a much better factor is the use of the type. Types that are simple 
structures or data carriers are excellent candidates for value types. It’s true 
that value types are more efficient in terms of memory management:
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There is less heap fragmentation, less garbage, and less indirection. More 
important, value types are copied when they are returned from methods 
or properties. There is no danger of exposing references to internal struc-
tures. But you pay in terms of features. Value types have very limited sup-
port for common object-oriented techniques. You cannot create object 
hierarchies of value types. You should consider all value types as though 
they were sealed. You can create value types that implement interfaces but 
require boxing, which Item 17 shows causes performance degradation. 
Think of value types as storage containers, not objects in the OO sense.

You’ll create more reference types than value types. If you answer yes to all 
these questions, you should create a value type. Compare these to the pre-
vious Employee example:

1. Is this type’s principal responsibility data storage?
2. Is its public interface defined entirely by properties that access its data 

members?
3. Am I confident that this type will never have subclasses?
4. Am I confident that this type will never be treated polymorphically?

Build low-level data storage types as value types. Build the behavior of 
your application using reference types. You get the safety of copying data 
that gets exported from your class objects. You get the memory usage ben-
efits that come with stack-based and inline value storage, and you can uti-
lize standard object-oriented techniques to create the logic of your 
application. When in doubt about the expected use, use a reference type.

Item 19: Ensure That 0 Is a Valid State for Value Types

The default .NET system initialization sets all objects to all 0s. There is no 
way for you to prevent other programmers from creating an instance of a 
value type that is initialized to all 0s. Make that the default value for your 
type.

One special case is enums. Never create an enum that does not include 0 as 
a valid choice. All enums are derived from System.ValueType. The values 
for the enumeration start at 0, but you can modify that behavior:

public enum Planet 

{

// Explicitly assign values.
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// Default starts at 0 otherwise.

Mercury = 1, 

Venus = 2, 

Earth = 3, 

Mars = 4, 

Jupiter = 5, 

Saturn = 6, 

Neptune = 7, 

Uranus = 8 

// First edition included Pluto. 

}

Planet sphere = new Planet();

sphere is 0, which is not a valid value. Any code that relies on the (nor-
mal) fact that enums are restricted to the defined set of enumerated values 
won’t work. When you create your own values for an enum, make sure that 
0 is one of them. If you use bit patterns in your enum, define 0 to be the 
absence of all the other properties.

As it stands now, you force all users to explicitly initialize the value:

Planet sphere2 = Planet.Mars;

That makes it harder to build other value types that contain this type:

public struct ObservationData 

{

private Planet whichPlanet; //what am I looking at? 

private double magnitude; // perceived brightness.

}

Users who create a new ObservationData object will create an invalid 
Planet field:

ObservationData d = new ObservationData();

The newly created ObservationData has a 0 magnitude, which is reason-
able. But the planet is invalid. You need to make 0 a valid state. If possible, 
pick the best default as the value 0. The Planet enum does not have an obvi-
ous default. It doesn’t make any sense to pick some arbitrary planet when-
ever the user does not. If you run into that situation, use the 0 case for an 
uninitialized value that can be updated later:

Item 19: Ensure That 0 Is a Valid State for Value Types ❘ 111



ptg

public enum Planet2 

{

None = 0, 

Mercury = 1, 

Venus = 2, 

Earth = 3, 

Mars = 4, 

Jupiter = 5, 

Saturn = 6, 

Neptune = 7, 

Uranus = 8

}

Planet sphere = new Planet();

sphere now contains a value for None. Adding this uninitialized default to 
the Planet enum ripples up to the ObservationData structure. Newly cre-
ated ObservationData objects have a 0 magnitude and None for the target. 
Add an explicit constructor to let users of your type initialize all the fields 
explicitly:

public struct ObservationData 

{

Planet whichPlanet; //what am I looking at? 

double magnitude; // perceived brightness.

ObservationData(Planet target, 

double mag)

{

whichPlanet = target; 

magnitude = mag;

} 

}

But remember that the default constructor is still visible and part of the 
structure. Users can still create the system-initialized variant, and you can’t 
stop them.

This is still somewhat faulty, because observing nothing doesn’t really 
make sense. You could solve this specific case by changing Observation-
Data to a class, which means that the parameterless constructor does not
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need to be accessible. But, when you are creating an enum, you cannot force
other developers to abide by those rules. The best you can do is to create
enum types where the 0 bit pattern is valid, even if that isn’t a perfect 
abstraction.

Before leaving enums to discuss other value types, you need to understand 
a few special rules for enums used as flags. enums that use the Flags attrib-
ute should always set the None value to 0:

[Flags] 

public enum Styles 

{

None = 0, 

Flat = 1, 

Sunken = 2, 

Raised = 4,

}

Many developers use flags enumerations with the bitwise AND operator. 
0 values cause serious problems with bitflags. The following test will never 
work if Flat has the value of 0:

if ((flag & Styles.Flat) != 0) // Never true if Flat == 0. 

DoFlatThings();

If you use Flags, ensure that 0 is valid and that it means “the absence of all 
flags.”

Another common initialization problem involves value types that contain 
references. Strings are a common example:

public struct LogMessage 

{

private int ErrLevel; 

private string msg;

}

LogMessage MyMessage = new LogMessage();

MyMessage contains a null reference in its msg field. There is no way to 
force a different initialization, but you can localize the problem using prop-
erties. You created a property to export the value of msg to all your clients. 
Add logic to that property to return the empty string instead of null:
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public struct LogMessage2 

{

private int ErrLevel; 

private string msg;

public string Message 

{

get 

{

return (msg != null) ? 

msg : string.Empty;

} 

set 

{

msg = value; 

}

} 

}

You should use this property inside your own type. Doing so localizes the
null reference check to one location. The Message accessor is almost cer-
tainly inlined as well, when called from inside your assembly. You’ll get 
efficient code and minimize errors.

The system initializes all instances of value types to 0. There is no way to 
prevent users from creating instances of value types that are all 0s. If pos-
sible, make the all 0 case the natural default. As a special case, enums used
as flags should ensure that 0 is the absence of all flags.

Item 20: Prefer Immutable Atomic Value Types

Immutable types are simple: After they are created, they are constant. If 
you validate the parameters used to construct the object, you know that it 
is in a valid state from that point forward. You cannot change the object’s 
internal state to make it invalid. You save yourself a lot of otherwise nec-
essary error checking by disallowing any state changes after an object has 
been constructed. Immutable types are inherently thread safe: Multiple 
readers can access the same contents. If the internal state cannot change, 
there is no chance for different threads to see inconsistent views of the data. 
Immutable types can be exported from your objects safely. The caller cannot
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modify the internal state of your objects. Immutable types work better in 
hash-based collections. The value returned by Object.GetHashCode() 
must be an instance invariant (see Item 7); that’s always true for 
immutable types.

In practice, it is very difficult to make every type immutable. You would 
need to clone objects to modify any program state. That’s why this rec-
ommendation is for both atomic and immutable value types. Decompose 
your types to the structures that naturally form a single entity. An Address 
type does. An address is a single thing, composed of multiple related fields. 
A change in one field likely means changes to other fields. A customer type 
is not an atomic type. A customer type will likely contain many pieces of 
information: an address, a name, and one or more phone numbers. Any of 
these independent pieces of information might change. A customer might 
change phone numbers without moving. A customer might move, yet still 
keep the same phone number. A customer might change his or her name 
without moving or changing phone numbers. A customer object is not 
atomic; it is built from many different immutable types using composi-
tion: an address, a name, or a collection of phone number/type pairs. 
Atomic types are single entities: You would naturally replace the entire 
contents of an atomic type. The exception would be to change one of its 
component fields.

Here is a typical implementation of an address that is mutable:

// Mutable Address structure. 

public struct Address 

{

private string state; 

private int zipCode;

// Rely on the default system-generated 

// constructor.

public string Line1 

{

get; 

set;

} 

public string Line2 

{
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get; 

set;

} 

public string City 

{

get; 

set;

} 

public string State 

{

get { return state; } 

set 

{

ValidateState(value); 

state = value;

} 

}

public int ZipCode 

{

get { return zipCode; } 

set 

{

ValidateZip(value); 

zipCode = value;

} 

} 

// other details omitted.

}

// Example usage:

Address a1 = new Address(); 

a1.Line1 = "111 S. Main"; 

a1.City = "Anytown"; 

a1.State = "IL"; 

a1.ZipCode = 61111; 

// Modify: 

a1.City = "Ann Arbor"; // Zip, State invalid now. 

a1.ZipCode = 48103; // State still invalid now. 

a1.State = "MI"; // Now fine.
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Internal state changes mean that it’s possible to violate object invariants, 
at least temporarily. After you have replaced the City field, you have placed 
a1 in an invalid state. The city has changed and no longer matches the state 
or ZIP code fields. The code looks harmless enough, but suppose that this 
fragment is part of a multithreaded program. Any context switch after the 
city changes and before the state changes would leave the potential for 
another thread to see an inconsistent view of the data.

Okay, so you think you’re not writing a multithreaded program. You can 
still get into trouble. Imagine that the ZIP code was invalid and the set 
threw an exception. You’ve made only some of the changes you intended, 
and you’ve left the system in an invalid state. To fix this problem, you 
would need to add considerable internal validation code to the address 
structure. That validation code would add considerable size and complex-
ity. To fully implement exception safety, you would need to create defensive 
copies around any code block in which you change more than one field. 
Thread safety would require adding significant thread-synchronization 
checks on each property accessor, both sets and gets. All in all, it would be 
a significant undertaking—and one that would likely be extended over 
time as you add new features.

Instead, if you need Address to be a struct, make it immutable. Start by 
changing all instance fields to read-only for outside uses.

public struct Address2 

{

// remaining details elided 

public string Line1 

{

get; 

private set;

} 

public string Line2 

{

get; 

private set;

} 

public string City 

{

get;
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private set; 

} 

public string State 

{

get; 

private set;

} 

public int ZipCode 

{

get; 

private set;

} 

}

Now you have an immutable type, based on the public interface. To make 
it useful, you need to add all necessary constructors to initialize the Address 
structure completely. The Address structure needs only one additional 
constructor, specifying each field. A copy constructor is not needed 
because the assignment operator is just as efficient. Remember that the 
default constructor is still accessible. There is a default address where all the 
strings are null, and the ZIP code is 0:

public Address2(string line1, 

string line2, 

string city, 

string state, 

int zipCode) : 

this()

{ 

Line1 = line1;

Line2 = line2;

City = city; 

ValidateState(state); 

State = state; 

ValidateZip(zipCode); 

ZipCode = zipCode;

}

Using the immutable type requires a slightly different calling sequence to 
modify its state. You create a new object rather than modify the existing 
instance:
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// Create an address:

Address2 a2 = new Address2("111 S. Main", 

"", "Anytown", "IL", 61111);

// To change, re-initialize: 

a2 = new Address2(a1.Line1,

a1.Line2, "Ann Arbor", "MI", 48103);

The value of a1 is in one of two states: its original location in Anytown, or 
its updated location in Ann Arbor. You do not modify the existing address 
to create any of the invalid temporary states from the previous example. 
Those interim states exist only during the execution of the Address con-
structor and are not visible outside that constructor. As soon as a new 
Address object is constructed, its value is fixed for all time. It’s exception 
safe: a1 has either its original value or its new value. If an exception is 
thrown during the construction of the new Address object, the original 
value of a1 is unchanged.

This second Address type is not strictly immutable. Implicit Properties 
with private setters can still contain methods that change the internal state. 
If you want a truly immutable type, you would need to make further 
changes. You need to change the implicit properties to explicit properties, 
and change the backing field to a readonly field of the type:

public struct Address3 

{

// remaining details elided 

public string Line1 

{

get { return Line1; } 

} 

private readonly string line1;

public string Line2 

{

get { return line2; } 

} 

private readonly string line2;

public string City 

{
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get { return city; } 

} 

private readonly string city;

public string State 

{

get { return state; } 

} 

private readonly string state;

public int ZipCode 

{

get { return zip; } 

} 

private readonly int zip;

public Address3(string line1, 

string line2, 

string city, 

string state, 

int zipCode) : 

this()

{

this.line1 = line1; 

this.line2 = line2; 

this.city = city; 

ValidateState(state); 

this.state = state; 

ValidateZip(zipCode); 

this.zip = zipCode;

} 

}

To create an immutable type, you need to ensure that there are no holes 
that would allow clients to change your internal state. Value types do not 
support derived types, so you do not need to defend against derived types 
modifying fields. But you do need to watch for any fields in an immutable 
type that are mutable reference types. When you implement your con-
structors for these types, you need to make a defensive copy of that muta-
ble type. All these examples assume that Phone is an immutable value type 
because we’re concerned only with immutability in value types:
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// Almost immutable: there are holes that would 

// allow state changes. 

public struct PhoneList 

{

private readonly Phone[] phones;

public PhoneList(Phone[] ph) 

{

phones = ph; 

}

public IEnumerable<Phone> Phones 

{

get 

{

return phones; 

}

} 

}

Phone[] phones = new Phone[10]; 

// initialize phones 

PhoneList pl = new PhoneList(phones);

// Modify the phone list: 

// also modifies the internals of the (supposedly) 

// immutable object. 

phones[5] = Phone.GeneratePhoneNumber();

The array class is a reference type. The array referenced inside the 
PhoneList structure refers to the same array storage (phones) allocated 
outside the object. Developers can modify your immutable structure 
through another variable that refers to the same storage. To remove this 
possibility, you need to make a defensive copy of the array. The previous 
example shows the pitfalls of a mutable collection. Even more possibilities 
for mischief exist if the Phone type is a mutable reference type. Clients 
could modify the values in the collection, even if the collection is protected 
against any modification. This defensive copy should be made in all con-
structors whenever your immutable type contains a mutable reference 
type:
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// Immutable: A copy is made at construction. 

public struct PhoneList2 

{

private readonly Phone[] phones;

public PhoneList2(Phone[] ph) 

{

phones = new Phone[ph.Length]; 

// Copies values because Phone is a value type. 

ph.CopyTo(phones, 0);

}

public IEnumerable<Phone> Phones 

{

get 

{

return phones; 

}

} 

}

Phone[] phones2 = new Phone[10]; 

// initialize phones 

PhoneList p2 = new PhoneList(phones);

// Modify the phone list: 

// Does not modify the copy in pl. 

phones2[5] = Phone.GeneratePhoneNumber();

You need to follow the same rules when you return a mutable reference 
type. If you add a property to retrieve the entire array from the PhoneList 
struct, that accessor would also need to create a defensive copy. See Item 
27 for more details.

The complexity of a type dictates which of three strategies you will use to 
initialize your immutable type. The Address structure defined one con-
structor to allow clients to initialize an address. Defining the reasonable set 
of constructors is often the simplest approach.

You can also create factory methods to initialize the structure. Factories 
make it easier to create common values. The .NET Framework Color type
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follows this strategy to initialize system colors. The static methods 
Color.FromKnownColor() and Color.FromName() return a copy of a 
color value that represents the current value for a given system color.

Third, you can create a mutable companion class for those instances in 
which multistep operations are necessary to fully construct an immutable 
type. The .NET string class follows this strategy with the System.Text 
.StringBuilder class. You use the StringBuilder class to create a string using 
multiple operations. After performing all the operations necessary to build 
the string, you retrieve the immutable string from the StringBuilder.

Immutable types are simpler to code and easier to maintain. Don’t blindly 
create get and set accessors for every property in your type. Your first 
choice for types that store data should be immutable, atomic value types. 
You easily can build more complicated structures from these entities.
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3 ❘ Expressing Designs in C#
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Beginners using a foreign (human) language can manage to communi-
cate. They know the words, and they can piece them together to get their 
point across. As beginners transition to experts in a language, they begin 
to use the proper idioms in this foreign language. The language becomes 
less foreign, and the person begins speaking more efficiently and more 
clearly. Programming languages are no different. The techniques you 
choose communicate your design intent to the developers who maintain, 
extend, or use the software you develop. C# types all live inside the .NET 
environment. The environment makes some assumptions about the capa-
bilities of all types as well. If you violate those assumptions, you increase 
the likelihood that your types won’t function correctly.

The items in this chapter are not a compendium of software design tech-
niques—entire volumes have been written about software design. Instead, 
these items highlight how different C# language features can best express 
the intent of your software design. The C# language designers added lan-
guage features to more clearly express modern design idioms. The dis-
tinctions among certain language features are subtle, and you often have 
many alternatives to choose from. More than one alternative might seem 
“best” at first; the distinctions show up only later, when you find that you 
must enhance an existing program. Make sure you understand these items 
well, and apply them carefully with an eye toward the most likely enhance-
ments to the systems you are building.

Some syntax changes give you new vocabulary to describe the idioms you 
use every day. Properties, indexers, events, and delegates are examples, as 
is the difference between classes and interfaces: Classes define types. Inter-
faces declare behavior. Base classes declare types and define common 
behavior for a related set of types. Other design idioms have changed 
because of the Garbage Collector. Still others have changed because most 
variables are reference types.

The recommendations in this chapter will help you pick the most natural 
expression for your designs. This will enable you to create software that is 
easier to maintain, easier to extend, and easier to use.
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Item 21: Limit Visibility of Your Types

Not everybody needs to see everything. Not every type you create needs to 
be public. You should give each type the least visibility necessary to accom-
plish your purpose. That’s often less visibility than you think. Internal or 
private classes can implement public interfaces. All clients can access the 
functionality defined in the public interfaces declared in a private type.

It’s just too easy to create public types. And, it’s often expedient to do just 
that. Many standalone classes that you create should be internal. You can 
further limit visibility by creating protected or private classes nested inside 
your original class. The less visibility there is, the less the entire system 
changes when you make updates later. The fewer places that can access a 
piece of code, the fewer places you must change when you modify it.

Expose only what needs to be exposed. Try implementing public interfaces 
with less visible classes. You’ll find examples using the Enumerator pattern 
throughout the .NET Framework library. System.Collections.Generic 
.List<T> contains a private class, Enumerator<T>, that implements the 
IEnumerator<T> interface:

// For illustration, not complete source 

public class List<T> : IEnumerable<T> 

{

private class Enumerator<T> : IEnumerator<T> 

{

// Contains specific implementation of 

// MoveNext(), Reset(), and Current.

public Enumerator(List<T> storage) 

{

// elided 

}

}

public IEnumerator<T> GetEnumerator() 

{

return new Enumerator<T>(this); 

}

// other List members. 

}
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Client code, written by you, never needs to know about the class Enumer-
ator<T>. All you need to know is that you get an object that implements 
the IEnumerator<T> interface when you call the GetEnumerator func-
tion on a List<T> object. The specific type is an implementation detail. 
The .NET Framework designers followed this same pattern with the other 
collection classes: Dictionary<T> contains a private DictionaryEnumer-
ator<T>, Queue<T> contains a QueueEnumerator<T>, and so on. The 
enumerator class being private gives many advantages. First, the List<T> 
class can completely replace the type implementing IEnumerator<T>, and 
you’d be none the wiser. Nothing breaks. Also, the enumerator class need 
not be Common Language Specification (CLS) compliant. It’s not public 
(see Item 49). Its public interface is compliant. You can use the enumera-
tor without detailed knowledge about the class that implements it.

Creating internal classes is an often-overlooked method of limiting the 
scope of types. By default, most programmers create public classes all the 
time, without any thought to the alternatives. It’s that VS .NET wizard 
thing. Instead of unthinkingly accepting the default, you should give care-
ful thought to where your new type will be used. Is it useful to all clients, 
or is it primarily used internally in this one assembly?

Exposing your functionality using interfaces enables you to more easily 
create internal classes without limiting their usefulness outside the assem-
bly (see Item 26). Does the type need to be public, or is an aggregation of 
interfaces a better way to describe its functionality? Internal classes allow 
you to replace the class with a different version, as long as it implements 
the same interfaces. As an example, consider a class that validates phone 
numbers:

public class PhoneValidator 

{

public bool ValidateNumber(PhoneNumber ph) 

{

// perform validation. 

// Check for valid area code, exchange. 

return true;

} 

}

Months pass, and this class works fine. Then you get a request to handle 
international phone numbers. The previous PhoneValidator fails. It was 
coded to handle only U.S. phone numbers. You still need the U.S. Phone
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Validator, but now you need to use an international version in one instal-
lation. Rather than stick the extra functionality in this one class, you’re 
better off reducing the coupling between the different items. You create an 
interface to validate any phone number:

public interface IPhoneValidator 

{

bool ValidateNumber(PhoneNumber ph); 

}

Next, change the existing phone validator to implement that interface, and 
make it an internal class:

internal class USPhoneValidator : IPhoneValidator 

{

public bool ValidateNumber(PhoneNumber ph) 

{

// perform validation. 

// Check for valid area code, exchange. 

return true;

} 

}

Finally, you can create a class for international phone validators:

internal class InternationalPhoneValidator : IPhoneValidator 

{

public bool ValidateNumber(PhoneNumber ph) 

{

// perform validation. 

// Check international code. 

// Check specific phone number rules. 

return true;

} 

}

To finish this implementation, you need to create the proper class based on 
the type of the phone number. You can use the factory pattern for this pur-
pose. Outside the assembly, only the interface is visible. The classes, which 
are specific for different regions in the world, are visible only inside the 
assembly. You can add different validation classes for different regions 
without disturbing any other assemblies in the system. By limiting the
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scope of the classes, you have limited the code you need to change to 
update and extend the entire system.

You could also create a public abstract base class for PhoneValidator, which 
could contain common implementation algorithms. The consumers could 
access the public functionality through the accessible base class. In this 
example, I prefer the implementation using public interfaces because there 
is little, if any, shared functionality. Other uses would be better served with 
public abstract base classes. Either way you implement it, fewer classes are 
publicly accessible.

In addition, fewer public types will create a smaller public surface area that 
will facilitate unit testing coverage. If there are fewer public types, there 
are fewer publicly accessible methods for which you need to create tests. 
Also, if more of the public APIs are exposed through interfaces, you have 
automatically created a system whereby you can replace those types using 
some kind of stubs for unit test purposes.

Those classes and interfaces that you expose publicly to the outside world 
are your contract: You must live up to them. The more cluttered that inter-
face is, the more constrained your future direction is. The fewer public 
types you expose, the more options you have to extend and modify any 
implementation in the future.

Item 22: Prefer Defining and Implementing Interfaces to 
Inheritance

Abstract base classes provide a common ancestor for a class hierarchy. An 
interface describes one atomic piece of functionality that can be imple-
mented by a type. Each has its place, but it is a different place. Interfaces 
are a way to design by contract: A type that implements an interface must 
supply an implementation for expected methods. Abstract base classes 
provide a common abstraction for a set of related types. It’s a cliché, but 
it’s one that works: Inheritance means “is a,” and interfaces means 
“behaves like.” These clichés have lived so long because they provide a 
means to describe the differences in both constructs: Base classes describe 
what an object is; interfaces describe one way in which it behaves.

Interfaces describe a set of functionality, or a contract. You can create 
placeholders for anything in an interface: methods, properties, indexers, 
and events. Any type that implements the interface must supply concrete
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implementations of all elements defined in the interface. You must imple-
ment all methods, supply any and all property accessors and indexers, and 
define all events defined in the interface. You identify and factor reusable 
behavior into interfaces. You use interfaces as parameters and return values. 
You also have more chances to reuse code because unrelated types can imple-
ment interfaces. What’s more, it’s easier for other developers to implement 
an interface than it is to derive from a base class you’ve created.

What you can’t do in an interface is provide implementation for any of 
these members. Interfaces contain no implementation whatsoever, and 
they cannot contain any concrete data members. You are declaring the 
binary contract that must be supported by all types that implement an 
interface. However, you can create extension methods on those interfaces 
to give the illusion of an implementation for interfaces. The System 
.Linq.Enumerable class contains more than 30 extension methods declared 
on IEnumerable<T>. Those methods appear to be part of any type that 
implements IEnumerable<T> by virtue of being extension methods. You 
saw this in Item 8:

public static class Extensions 

{

public static void ForAll<T>( 

this IEnumerable<T> sequence, 

Action<T> action)

{

foreach (T item in sequence) 

action(item);

} 

} 

// usage 

foo.ForAll((n) => Console.WriteLine(n.ToString()));

Abstract base classes can supply some implementation for derived types, 
in addition to describing the common behavior. You can specify data 
members, concrete methods, implementation for virtual methods, prop-
erties, events, and indexers. A base class can provide implementation for 
some of the methods, thereby providing common implementation reuse. 
Any of the elements can be virtual, abstract, or nonvirtual. An abstract 
base class can provide an implementation for any concrete behavior; inter-
faces cannot.
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This implementation reuse provides another benefit: If you add a method 
to the base class, all derived classes are automatically and implicitly 
enhanced. In that sense, base classes provide a way to extend the behavior 
of several types efficiently over time: By adding and implementing func-
tionality in the base class, all derived classes immediately incorporate that 
behavior. Adding a member to an interface breaks all the classes that 
implement that interface. They will not contain the new method and will 
no longer compile. Each implementer must update that type to include 
the new member.

Choosing between an abstract base class and an interface is a question of 
how best to support your abstractions over time. Interfaces are fixed: You 
release an interface as a contract for a set of functionality that any type 
can implement. Base classes can be extended over time. Those extensions 
become part of every derived class.

The two models can be mixed to reuse implementation code while sup-
porting multiple interfaces. One obvious example in the .NET Framework 
is the IEnumerable<T> interface and the System.Linq.Enumerable class. 
The System.Linq.Enumerable class contains a large number of extension 
methods defined on the System.Collections.Generic.IEnumerable<T> 
interface. That separation enables very important benefits. Any class that 
implements IEnumerable<T> appears to include all those extension meth-
ods. However, those additional methods are not formally defined in the 
IEnumerable<T> interface. That means class developers do not need to 
create their own implementation of all those methods.

Examine this class that implements IEnumerable<T> for weather
 observations.

public enum Direction 

{

North,

NorthEast, 

East, 

SouthEast, 

South, 

SouthWest, 

West, 

NorthWest

}
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public class WeatherData 

{

public double Temperature { get; set; } 

public int WindSpeed { get; set; } 

public Direction WindDirection { get; set; } 

public override string ToString() 

{

return string.Format(

"Temperature = {0}, Wind is {1} mph from the {2}",

Temperature, WindSpeed, WindDirection); 

}

}

public class WeatherDataStream : IEnumerable<WeatherData> 

{

private Random generator = new Random();

public WeatherDataStream(string location) 

{

// elided 

}

private IEnumerator<WeatherData> getElements() 

{

// Real implementation would read from 

// a weather station. 

for (int i = 0; i < 100; i++)

yield return new WeatherData 

{

Temperature = generator.NextDouble() * 90, 

WindSpeed = generator.Next(70), 

WindDirection = (Direction)generator.Next(7)

}; 

}

#region IEnumerable<WeatherData> Members 

public IEnumerator<WeatherData> GetEnumerator() 

{

return getElements(); 

} 

#endregion
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#region IEnumerable Members

System.Collections.IEnumerator

System.Collections.IEnumerable.GetEnumerator() 

{

return getElements(); 

} 

#endregion

}

The WeatherStream class models a sequence of weather observations. To do 
that it implements IEnumerable<WeatherData>. That means creating two 
methods: the GetEnumerator<T> method and the classic GetEnumerator 
method. The latter interface is explicitly implemented so that client code 
would naturally be drawn to the generic interface over the version typed 
as System.Object.

Implementing those two methods means that the WeatherStream class 
supports all the extension methods defined in System.Linq.Enumerable. 
That means WeatherStream can be a source for LINQ queries:

var warmDays = from item in 

new WeatherDataStream("Ann Arbor") 

where item.Temperature > 80 

select item;

LINQ query syntax compiles to method calls. The query above translates 
to the following calls:

var warmDays2 = new WeatherDataStream("Ann Arbor").

Where(item => item.Temperature > 80). 

Select(item => item);

In the code above, the Where and Select calls look like they belong to 
IEnumerable<WeatherData>. They do not. Those methods appear to 
belong to IEnumerable<WeatherData> because they are extension meth-
ods. They are actually static methods in System.Linq.Enumerable. The 
compiler translates those calls into the following static calls:

// Don't write this, for explanatory purposes 

var warmDays3 = Enumerable.Select(

Enumerable.Where( 

new WeatherDataStream("Ann Arbor"), 

item => item.Temperature > 80), 

item => item);
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I wrote that last version to show you that interfaces really can’t contain 
implementation. You can emulate that by using extension methods. LINQ 
does that by creating several extension methods on IEnumerable<T> in 
the System.Linq.Enumerable class.

That brings me to the topic of using interfaces as parameters and return 
values. An interface can be implemented by any number of unrelated 
types. Coding to interfaces provides greater flexibility to other developers 
than coding to base class types. That’s important because of the single 
inheritance hierarchy that the .NET environment enforces.

These three methods perform the same task:

public static void PrintCollection<T>(

IEnumerable<T> collection) 

{

foreach (T o in collection) 

Console.WriteLine("Collection contains {0}",

o.ToString());

}

public static void PrintCollection(

System.Collections.IEnumerable collection) 

{

foreach (object o in collection)

Console.WriteLine("Collection contains {0}",

o.ToString());

}

public static void PrintCollection(

WeatherDataStream collection) 

{

foreach (object o in collection)

Console.WriteLine("Collection contains {0}",

o.ToString());

}

The first method is most reusable. Any type that supports IEnumerable<T> 
can use that method. In addition to WeatherDataStream, you can use 
List<T>, SortedList<T>, any Array, and the results of any LINQ query. 
The second method will also work with many types, but uses the less prefer-
able nongeneric IEnumerable. The final method is far less reusable. It can-
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not be used with Arrays, ArrayLists, DataTables, Hashtables,  ImageLists, 
or many other collection classes. Coding the method using interfaces as 
its parameter types is far more generic and far easier to reuse.

Using interfaces to define the APIs for a class also provides greater flexi-
bility. The WeatherDataStream class could implement a method that 
returned a collection of WeatherData objects. That would look something 
like this:

public List<WeatherData> DataSequence 

{

get { return sequence; } 

} 

private List<WeatherData> sequence = new List<WeatherData>();

That leaves you vulnerable to future problems. At some point, you might 
change from using a List<WeatherData> to exposing an array, a 
SortedList<T>. Any of those changes will break the code. Sure, you can 
change the parameter type, but that’s changing the public interface to your 
class. Changing the public interface to a class causes you to make many 
more changes to a large system; you would need to change all the loca-
tions where the public property was accessed.

The second problem is more immediate and more troubling: The List<T> 
class provides numerous methods to change the data it contains. Users of 
your class could delete, modify, or even replace every object in the 
sequence. That’s almost certainly not your intent. Luckily, you can limit the 
capabilities of the users of your class. Instead of returning a reference to 
some internal object, you should return the interface you intend clients to 
use. That would mean returning an IEnumerable<WeatherData>.

When your type exposes properties as class types, it exposes the entire 
interface to that class. Using interfaces, you can choose to expose only the 
methods and properties you want clients to use. The class used to imple-
ment the interface is an implementation detail that can change over time 
(see Item 26).

Furthermore, unrelated types can implement the same interface. Suppose 
you’re building an application that manages employees, customers, and 
vendors. Those are unrelated, at least in terms of the class hierarchy. But 
they share some common functionality. They all have names, and you will 
likely display those names in controls in your applications.
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public class Employee 

{

public string FirstName { get; set; } 

public string LastName { get; set; }

public string Name 

{

get 

{

return string.Format("{0}, {1}",

LastName, FirstName); 

}

}

// other details elided. 

}

public class Customer 

{

public string Name 

{

get 

{

return customerName; 

}

}

// other details elided 

private string customerName;

}

public class Vendor 

{

public string Name 

{

get 

{

return vendorName; 

}

}
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// other details elided 

private string vendorName;

}

The Employee, Customer, and Vendor classes should not share a common 
base class. But they do share some properties: names (as shown earlier), 
addresses, and contact phone numbers. You could factor out those prop-
erties into an interface:

public interface IContactInfo 

{

string Name { get; }

PhoneNumber PrimaryContact { get; } 

PhoneNumber Fax { get; }

Address PrimaryAddress { get; }

}

public class Employee : IContactInfo 

{

// implementation elided. 

}

This new interface can simplify your programming tasks by letting you 
build common routines for unrelated types:

public void PrintMailingLabel(IContactInfo ic) 

{

// implementation deleted. 

}

This one routine works for all entities that implement the IContactInfo 
interface. Customer, Employee, and Vendor all use the same routine—but 
only because you factored them into interfaces.

Using interfaces also means that you can occasionally save an unboxing 
penalty for structs. When you place a struct in a box, the box supports 
all interfaces that the struct supports. When you access the struct
through the interface pointer, you don’t have to unbox the struct to
access that object. To illustrate, imagine this struct that defines a link and 
a description:

public struct URLInfo : IComparable<URLInfo>, IComparable 

{
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private string URL; 

private string description;

#region IComparable<URLInfo> Members 

public int CompareTo(URLInfo other) 

{

return URL.CompareTo(other.URL); 

} 

#endregion

#region IComparable Members 

int IComparable.CompareTo(object obj) 

{

if (obj is URLInfo) 

{

URLInfo other = (URLInfo)obj; 

return CompareTo(other);

} 

else

throw new ArgumentException(

"Compared object is not URLInfo");

} 

#endregion

}

You can create a sorted list of URLInfo objects easily because URLInfo 
implements IComparable<T> and IComparable. Even code that relies on 
the classic IComparable will have fewer times when boxing and unboxing 
is necessary because the client can call IComparable.CompareTo() with-
out unboxing the object.

Base classes describe and implement common behaviors across related 
concrete types. Interfaces describe atomic pieces of functionality that unre-
lated concrete types can implement. Both have their place. Classes define 
the types you create. Interfaces describe the behavior of those types as 
pieces of functionality. If you understand the differences, you will create 
more expressive designs that are more resilient in the face of change. Use 
class hierarchies to define related types. Expose functionality using inter-
faces implemented across those types.

138 ❘ Chapter 3  Expressing Designs in C#



ptg

Item 23: Understand How Interface Methods Differ from Virtual 
Methods

At first glance, implementing an interface seems to be the same as over-
riding a virtual function. You provide a definition for a member that has 
been declared in another type. That first glance is very deceiving. Imple-
menting an interface is very different from overriding a virtual function. 
Members declared in interfaces are not virtual—at least, not by default. 
Derived classes cannot override an interface member implemented in a base 
class. Interfaces can be explicitly implemented, which hides them from a 
class’s public interface. They are different concepts with different uses.

But you can implement interfaces in such a manner that derived classes 
can modify your implementation. You just have to create hooks for derived 
classes.

To illustrate the differences, examine a simple interface and implementa-
tion of it in one class:

interface IMsg 

{

void Message(); 

}

public class MyClass : IMsg 

{

public void Message() 

{

Console.WriteLine("MyClass"); 

}

}

The Message() method is part of MyClass’s public interface. Message can 
also be accessed through the IMsg point that is part of the MyClass type. 
Now let’s complicate the situation a little by adding a derived class:

public class MyDerivedClass : MyClass 

{

public void Message() 

{

Console.WriteLine("MyDerivedClass"); 

}

}
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Notice that I had to add the new keyword to the definition of the previous 
Message method (see Item 33). MyClass.Message() is not virtual. Derived 
classes cannot provide an overridden version of Message. The MyDerived 
class creates a new Message method, but that method does not override 
MyClass.Message: It hides it. Furthermore, MyClass.Message is still avail-
able through the IMsg reference:

MyDerivedClass d = new MyDerivedClass();

d.Message(); // prints "MyDerivedClass". 

IMsg m = d as IMsg;

m.Message(); // prints "MyClass"

Interface methods are not virtual. When you implement an interface, you 
are declaring a concrete implementation of a particular contract in that 
type.

But you often want to create interfaces, implement them in base classes, 
and modify the behavior in derived classes. You can. You’ve got two 
options. If you do not have access to the base class, you can reimplement 
the interface in the derived class:

public class MyDerivedClass : MyClass 

{

public new void Message() 

{

Console.WriteLine("MyDerivedClass"); 

}

}

The addition of the IMsg keyword changes the behavior of your derived 
class so that IMsg.Message() now uses the derived class version:

MyDerivedClass d = new MyDerivedClass();

d.Message(); // prints "MyDerivedClass". 

IMsg m = d as IMsg;

m.Message(); // prints " MyDerivedClass "

You still need the new keyword on the MyDerivedClass.Message() method. 
That’s your clue that there are still problems (see Item 33). The base class 
version is still accessible through a reference to the base class:

MyDerivedClass d = new MyDerivedClass();

d.Message(); // prints "MyDerivedClass".
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IMsg m = d as IMsg;

m.Message(); // prints "MyDerivedClass" 

MyClass b = d;

b.Message(); // prints "MyClass"

One way to fix this problem is to modify the base class, declaring that the 
interface methods should be virtual:

public class MyClass : IMsg 

{

public virtual void Message() 

{

Console.WriteLine("MyClass"); 

}

}

public class MyDerivedClass : MyClass 

{

public override void Message() 

{

Console.WriteLine("MyDerivedClass"); 

}

}

MyDerivedClass—and all classes derived from MyClass—can declare their 
own methods for Message(). The overridden version will be called every 
time: through the MyDerivedClass reference, through the IMsg reference, 
and through the MyClass reference.

If you dislike the concept of impure virtual functions, just make one small 
change to the definition of MyClass:

public abstract class MyClass : IMsg 

{

public abstract void Message(); 

}

Yes, you can implement an interface without actually implementing the 
methods in that interface. By declaring abstract versions of the methods in 
the interface, you declare that all types derived from your type must imple-
ment that interface. The IMsg interface is part of the declaration of 
MyClass, but defining the methods is deferred to each derived class.
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Derived classes can also prevent further overrides by sealing the method:

public class MyDerivedClass2 : MyClass 

{

public sealed override void Message() 

{

Console.WriteLine("MyDerivedClass"); 

}

}

Another solution is to implement the interface, and include a call to a vir-
tual method that enables derived classes to participate in the interface con-
tract. You would do that in MyClass this way:

public class MyClass2 : IMsg 

{

protected virtual void OnMessage() 

{ 

}

public void Message() 

{

OnMessage();

Console.WriteLine("MyClass");

} 

}

Any derived class can override OnMessage() and add their own work to the 
Message() method declared in MyClass2. It’s a pattern you’ve seen before 
when classes implement IDisposable (see Item 17).

Explicit interface implementation (see Item 31) enables you to implement 
an interface, yet hide its members from the public interface of your type. 
Its use throws a few other twists into the relationships between imple-
menting interfaces and overriding virtual functions. You use explicit inter-
face implementation to limit client code from using the interface methods 
when a more appropriate version is available. The IComparable idiom in 
Item 31 shows this in detail.

There is also one last wrinkle to add to working with interfaces and base 
classes. A base class can provide a default implementation for methods in an 
interface. Then, a derived class can declare that it implements an interface 
and inherit the implementation from that base class, as this example shows.
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public class DefaultMessageGenerator 

{

public void Message() 

{

Console.WriteLine("This is a default message"); 

}

}

public class AnotherMessageGenerator :

DefaultMessageGenerator, IMsg 

{

// No explicit Message() method needed. 

}

Notice that the derived class can declare the interface as part of its con-
tract, even though it does not provide any implementation of the IMsg 
methods. As long as it has a publicly accessible method with the proper 
signature, the interface contract is satisfied. Using this method, you can-
not use explicit interface implementation.

Implementing interfaces allows more options than creating and overrid-
ing virtual functions. You can create sealed implementations, virtual 
implementations, or abstract contracts for class hierarchies. You can also 
create a sealed implementation and provide virtual method calls in the 
methods that implement interfaces. You can decide exactly how and when 
derived classes can modify the default behavior for members of any inter-
face your class implements. Interface methods are not virtual methods but 
a separate contract.

Item 24: Express Callbacks with Delegates

Me: “Son, go mow the yard. I’m going to read for a while.” 
Scott: “Dad, I cleaned up the yard.”
Scott: “Dad, I put gas in the mower.”
Scott: “Dad, the mower won’t start.”
Me: “I’ll start it.”
Scott: “Dad, I’m done.”

This little exchange illustrates callbacks. I gave my son a task, and he 
(repeatedly) interrupted me with the status. I did not block my own 
progress while I waited for him to finish each part of the task. He was able
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to interrupt me periodically when he had an important (or even unim-
portant) status to report or needed my assistance. Callbacks are used to 
provide feedback from a server to a client asynchronously. They might 
involve multithreading, or they might simply provide an entry point for 
synchronous updates. Callbacks are expressed using delegates in the C# 
language.

Delegates provide type-safe callback definitions. Although the most com-
mon use of delegates is events, that should not be the only time you use 
this language feature. Anytime you need to configure the communication 
between classes and you desire less coupling than you get from interfaces, 
a delegate is the right choice. Delegates let you configure the target at run-
time and notify multiple clients. A delegate is an object that contains a ref-
erence to a method. That method can be either a static method or an 
instance method. Using the delegate, you can communicate with one or 
many client objects, configured at runtime.

Callbacks and delegates are such a common idiom that the C# language 
provides compact syntax in the form of lambda expressions to express del-
egates. In addition, the .NET Framework library defines many common 
delegate forms using Predicate<T>, Action<>, and Func<>. A predicate is 
a Boolean function that tests a condition. A Func<> takes a number of 
parameters and produces a single result. Yes, that means a Func<T, bool> has 
the same form as a Predicate<T>. The compiler will not view Predicate<T> 
and Func<T, bool> as the same though. Finally, Action<> takes any num-
ber of parameters and has the void return type.

LINQ was built using these concepts. The List<T> class also contains 
many methods that make use of callbacks. Examine this code snippet:

List<int> numbers = Enumerable.Range(1, 200).ToList();

var oddNumbers = numbers.Find(n => n % 2 == 1); 

var test = numbers.TrueForAll(n => n < 50);

numbers.RemoveAll(n => n % 2 == 0);

numbers.ForEach(item => Console.WriteLine(item));

The Find() method takes a delegate, in the form of a Predicate<int> to 
perform a test on each element in the list. It’s a simple callback. The Find() 
method tests each item, using the callback, and returns the elements that
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pass the test embodied in the predicate. The compiler takes the lambda 
expression, converts that to a delegate, and uses the delegate to express the 
callback.

TrueForAll() is similar in that it applies the test to each of the elements, and 
determines if the predicate is true for all items. RemoveAll() modifies the 
list container by removing all items for which the predicate is true.

Finally, the List.ForEach() method performs the specified action on each 
of the elements in the list. As before, the compiler converts the lambda 
expression into a method and creates a delegate referring to that method.

You’ll find numerous examples of this concept in the .NET Framework. All 
of LINQ is built on delegates. Callbacks are used to handle cross-thread 
marshalling in WPF and Windows Forms. Everywhere that the .NET 
Framework needs a single method, it will use a delegate that callers can 
express in the form of a lambda expression. You should follow the same 
example when you need a callback idiom in any of your APIs.

For historical reasons, all delegates are multicast delegates. Multicast del-
egates wrap all the target functions that have been added to the delegate in 
a single call. Two caveats apply to this construct: It is not safe in the face 
of exceptions, and the return value will be the return value of the last tar-
get function invoked by the multicast delegate.

Inside a multicast delegate invocation, each target is called in succession. 
The delegate does not catch any exceptions. Therefore, any exception that 
the target throws ends the delegate invocation chain.

A similar problem exists with return values. You can define delegates that 
have return types other than void. You could write a callback to check for 
user aborts:

public void LengthyOperation(Func<bool> pred) 

{

foreach (ComplicatedClass cl in container) 

{

cl.DoLengthyOperation(); 

// Check for user abort: 

if (false == pred())

return; 

}

}
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It works as a single delegate, but using it as a multicast is problematic:

Func<bool> cp = () => CheckWithUser(); 

cp += () => CheckWithSystem();

c.LengthyOperation(cp);

The value returned from invoking the delegate is the return value from 
the last function in the multicast chain. All other return values are ignored. 
The return from the CheckWithUser() predicate is ignored.

You address both issues by invoking each delegate target yourself. Each 
delegate you create contains a list of delegates. To examine the chain your-
self and call each one, iterate the invocation list yourself:

public void LengthyOperation2(Func<bool> pred) 

{

bool bContinue = true; 

foreach (ComplicatedClass cl in container) 

{

cl.DoLengthyOperation(); 

foreach (Func<bool> pr in pred.GetInvocationList())

bContinue &= pr();

if (!bContinue) 

return;

} 

}

In this case, I’ve defined the semantics so that each delegate must be true 
for the iteration to continue.

Delegates provide the best way to utilize callbacks at runtime, with simpler 
requirements on client classes. You can configure delegate targets at run-
time. You can support multiple client targets. Client callbacks should be 
implemented using delegates in .NET.

Item 25: Implement the Event Pattern for Notifications

The .NET Event Pattern is nothing more than syntax conventions on the 
Observer Pattern. (See Design Patterns, Gamma, Helm, Johnson, and
 Vlissides pp. 293-303.) Events define the notifications for your type. Events
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are built on delegates to provide type-safe function signatures for event 
handlers. Add to this the fact that most examples that use delegates are 
events, and developers start thinking that events and delegates are the same 
things. In Item 24, I showed you examples of when you can use delegates 
without defining events. You should raise events when your type must 
communicate with multiple clients to inform them of actions in the sys-
tem. Events are how objects notify observers.

Consider a simple example. You’re building a log class that acts as a dis-
patcher of all messages in an application. It will accept all messages from 
sources in your application and will dispatch those messages to any inter-
ested listeners. These listeners might be attached to the console, a data-
base, the system log, or some other mechanism. You define the class as 
follows, to raise one event whenever a message arrives:

public class LoggerEventArgs : EventArgs 

{

public string Message { get; private set; } 

public int Priority { get; private set; }

public LoggerEventArgs(int p, string m) 

{

Priority = p;

Message = m;

} 

}

public class Logger 

{

static Logger() 

{

theOnly = new Logger(); 

}

private Logger() 

{ 

}

private static Logger theOnly = null; 

public static Logger Singleton 

{
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get { return theOnly; } 

}

// Define the event: 

public event EventHandler<LoggerEventArgs> Log;

// add a message, and log it. 

public void AddMsg(int priority, string msg) 

{

// This idiom discussed below.

EventHandler<LoggerEventArgs> l = Log; 

if (l != null)

l(this, new LoggerEventArgs(priority, msg)); 

}

}

The AddMsg method shows the proper way to raise events. The temporary 
variable to reference the log event handler is an important safeguard 
against race conditions in multithreaded programs. Without the copy of 
the reference, clients could remove event handlers between the if state-
ment check and the execution of the event handler. By copying the refer-
ence, that can’t happen.

I’ve defined LoggerEventArgs to hold the priority of an event and the mes-
sage. The delegate defines the signature for the event handler. Inside the 
Logger class, the event field defines the event handler. The compiler sees 
the public event field definition and creates the Add and Remove opera-
tors for you. The generated code is exactly the same as though you had 
written the following:

public class Logger 

{

private EventHandler<LoggerEventArgs> log;

public event EventHandler<LoggerEventArgs> Log 

{

add { log = log + value; }

remove { log = log - value; } 

}

148 ❘ Chapter 3  Expressing Designs in C#



ptg

public void AddMsg(int priority, string msg) 

{

EventHandler<LoggerEventArgs> l = log; 

if (l != null)

l(null, new LoggerEventArgs(priority, msg)); 

}

}

The C# compiler creates the add and remove accessors for the event. I find 
the public event declaration language more concise and easier to read and 
maintain than the add/remove syntax. When you create events in your 
class, declare public events and let the compiler create the add and remove 
properties for you. Writing your own add and remove handlers lets you do 
more work in the add and remove handlers.

Events do not need to have any knowledge about the potential listeners. 
The following class automatically routes all messages to the Standard Error 
console:

class ConsoleLogger 

{

static ConsoleLogger() 

{

Logger.Singleton.Log += (sender, msg) => 

{

Console.Error.WriteLine("{0}:\t{1}", 

msg.Priority.ToString(), 

msg.Message);

}; 

}

}

Another class could direct output to the system event log:

class EventLogger 

{

private static Logger logger = Logger.Singleton; 

private static string eventSource; 

private static EventLog logDest;

static EventLogger() 

{
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logger.Log += (sender, msg) => 

{

if (logDest != null) 

logDest.WriteEntry(msg.Message,

EventLogEntryType.Information, 

msg.Priority);

}; 

}

public static string EventSource 

{

get { return eventSource; }

set 

{

eventSource = value; 

if (!EventLog.SourceExists(eventSource))

EventLog.CreateEventSource(eventSource, 

"ApplicationEventLogger");

if (logDest != null) 

logDest.Dispose();

logDest = new EventLog(); 

logDest.Source = eventSource;

} 

}

}

Events notify any number of interested clients that something happened. 
The Logger class does not need any prior knowledge of which objects are 
interested in logging events.

The Logger class contained only one event. There are classes (mostly Win-
dows controls) that have very large numbers of events. In those cases, the 
idea of using one field per event might be unacceptable. In some cases, 
only a small number of the defined events is actually used in any one appli-
cation. If you encounter that situation, you can modify the design to cre-
ate the event objects only when needed at runtime.

The core framework contains examples of how to do this in the Windows 
control subsystem. To show you how, add subsystems to the Logger class.
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You create an event for each subsystem. Clients register on the event that 
is pertinent to their subsystems.

The extended Logger class has a System.ComponentModel.EventHandlerList 
container that stores all the event objects that should be raised for a given 
system. The updated AddMsg() method now takes a string parameter that 
specifies the subsystem generating the log message. If the subsystem has 
any listeners, the event gets raised. Also, if an event listener has registered 
an interest in all messages, its event gets raised:

public sealed class Logger 

{

private static System.ComponentModel.EventHandlerList 

Handlers = new EventHandlerList();

static public void AddLogger( 

string system, EventHandler<LoggerEventArgs> ev)

{

Handlers.AddHandler(system, ev); 

}

static public void RemoveLogger(string system,

EventHandler<LoggerEventArgs> ev) 

{

Handlers.RemoveHandler(system, ev); 

}

static public void AddMsg(string system, 

int priority, string msg)

{

if (!string.IsNullOrEmpty(system)) 

{

EventHandler<LoggerEventArgs> l = 

Handlers[system] as

EventHandler<LoggerEventArgs>;

LoggerEventArgs args = new LoggerEventArgs( 

priority, msg);

if (l != null) 

l(null, args);
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// The empty string means receive all messages: 

l = Handlers[""] as

EventHandler<LoggerEventArgs>; 

if (l != null)

l(null, args); 

}

} 

}

This new example stores the individual event handlers in the 
EventHandlerList collection. Sadly, there is no generic version of
 EventHandlerList. Therefore, you’ll see a lot more casts and conversions in 
this block of code than you’ll see in many of the samples in this book. 
Client code attaches to a specific subsystem, and a new event object is cre-
ated. Subsequent requests for the same subsystem retrieve the same event 
object. If you develop a class that contains a large number of events in its 
interface, you should consider using this collection of event handlers. You 
create event members when clients attach to the event handler on their 
choice. Inside the .NET Framework, the System.Windows.Forms.Control 
class uses a more complicated variation of this implementation to hide the 
complexity of all its event fields. Each event field internally accesses a col-
lection of objects to add and remove the particular handlers. You can find 
more information that shows this idiom in the C# language specification.

The EventHandlerList class is one of the classes that have not been updated 
with a new generic version. It’s not hard to construct your own from the 
Dictionary class:

public sealed class Logger 

{

private static Dictionary<string,

EventHandler<LoggerEventArgs>>

Handlers = new Dictionary<string,

EventHandler<LoggerEventArgs>>();

static public void AddLogger( 

string system, EventHandler<LoggerEventArgs> ev)

{

if (Handlers.ContainsKey(system))

Handlers[system] += ev; 

else
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Handlers.Add(system, ev); 

}

static public void RemoveLogger(string system,

EventHandler<LoggerEventArgs> ev) 

{

// will throw exception if system 

// does not contain a handler. 

Handlers[system] -= ev;

}

static public void AddMsg(string system, 

int priority, string msg)

{

if (string.IsNullOrEmpty(system)) 

{

EventHandler<LoggerEventArgs> l = null; 

Handlers.TryGetValue(system, out l);

LoggerEventArgs args = new LoggerEventArgs( 

priority, msg);

if (l != null) 

l(null, args);

// The empty string means receive all messages: 

l = Handlers[""] as

EventHandler<LoggerEventArgs>; 

if (l != null)

l(null, args); 

}

} 

}

The generic version trades casts and type conversions for increased code to 
handle event maps. I’d prefer the generic version, but it’s a close tradeoff.

Events provide a standard syntax for notifying listeners. The .NET Event 
Pattern follows the event syntax to implement the Observer Pattern. Any 
number of clients can attach handlers to the events and process them. 
Those clients need not be known at compile time. Events don’t need sub-
scribers for the system to function properly. Using events in C# decouples
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the sender and the possible receivers of notifications. The sender can be 
developed completely independently of any receivers. Events are the stan-
dard way to broadcast information about actions that your type has taken.

Item 26: Avoid Returning References to Internal Class Objects

You’d like to think that a read-only property is read-only and that callers 
can’t modify it. Unfortunately, that’s not always the way it works. If you 
create a property that returns a reference type, the caller can access any 
public member of that object, including those that modify the state of the 
property. For example:

public class MyBusinessObject 

{

// Read Only property providing access to a 

// private data member: 

private BindingList<ImportantData> listOfData = 

new BindingList<ImportantData>();

public BindingList<ImportantData> Data 

{

get { return listOfData; } 

} 

// other details elided

}

// Access the collection:

BindingList<ImportantData> stuff = bizObj.Data; 

// Not intended, but allowed: 

stuff.Clear(); // Deletes all data.

Any public client of MyBusinessObject can modify your internal dataset. 
You created properties to hide your internal data structures. You provided 
methods to let clients manipulate the data only through known methods, 
so your class can manage any changes to internal state. And then a read-
only property opens a gaping hole in your class encapsulation. It’s not a 
read-write property, where you would consider these issues, but a read-
only property.

Welcome to the wonderful world of reference-based systems. Any member 
that returns a reference type returns a handle to that object. You gave the
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caller a handle to your internal structures, so the caller no longer needs to 
go through your object to modify that contained reference.

Clearly, you want to prevent this kind of behavior. You built the interface 
to your class, and you want users to follow it. You don’t want users to access 
or modify the internal state of your objects without your knowledge. 
You’ve got four different strategies for protecting your internal data struc-
tures from unintended modifications: value types, immutable types, inter-
faces, and wrappers.

Value types are copied when clients access them through a property. Any 
changes to the copy retrieved by the clients of your class do not affect your 
object’s internal state. Clients can change the copy as much as necessary to 
achieve their purposes. This does not affect your internal state.

Immutable types, such as System.String, are also safe (see Item 20). You 
can return strings, or any immutable type, safely knowing that no client of 
your class can modify the string. Your internal state is safe.

The third option is to define interfaces that allow clients to access a subset 
of your internal member’s functionality (see Item 22). When you create 
your own classes, you can create sets of interfaces that support subsets of 
the functionality of your class. By exposing the functionality through those 
interfaces, you minimize the possibility that your internal data changes in 
ways you did not intend. Clients can access the internal object through the 
interface you supplied, which will not include the full functionality of the 
class. Exposing the IEnumerable<T> interface pointer in the List<T> is 
one example of this strategy. The Machiavellian programmers out there 
can defeat that by guessing the type of the object that implements the 
interface and using a cast. But programmers who go to that much work to 
create bugs get what they deserve.

There is one strange twist in the BindingList class that may cause some 
problems. There isn’t a generic version of IBindingList, so you may want 
to create two different API methods for accessing the data: one that sup-
ports DataBinding via the IBindingList interface, and one that supports 
programming through the ICollection<T>, or similar interface.

public class MyBusinessObject 

{

// Read Only property providing access to a 

// private data member:
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private BindingList<ImportantData> listOfData = new

BindingList<ImportantData>(); 

public IBindingList BindingData 

{

get { return listOfData; } 

} 

public ICollection<ImportantData> CollectionOfData 

{

get { return listOfData; } 

} 

// other details elided

}

Before we talk about how to create a completely read-only view of the data, 
let’s take a brief look at how you can respond to changes in your data when 
you allow public clients to modify it. This is important because you’ll often 
want to export an IBindingList to UI controls so that the user can edit the 
data. You’ve undoubtedly already used Windows forms data binding to 
provide the means for your users to edit private data in your objects. The 
BindingList<T> class supports the IBindingList interface so that you can 
respond to any additions, updates, or deletions of items in the collection 
being shown to the user.

You can generalize this technique anytime you want to expose internal 
data elements for modification by public clients, but you need to validate 
and respond to those changes. Your class subscribes to events generated 
by your internal data structure. Event handlers validate changes or respond 
to those changes by updating other internal state. (See Item 25.)

Going back to the original problem, you want to let clients view your data 
but not make any changes. When your data is stored in a BindingList<T>, 
you can enforce that by setting various properties on the BindingList 
object (AddEdit, AllowNew, AllowRemove, etc.). The values of these prop-
erties are honored by UI controls. The UI controls enable and disable dif-
ferent actions based on the value of these properties. These are public 
properties, so that you can modify the behavior of your collection. But 
that also means you should not expose the BindingList<T> object as a 
public property. Clients could modify those properties and circumvent 
your intent to make a read-only binding collection. Once again, exposing 
the internal storage through an interface type rather than the class type 
will limit what client code can do with that object.
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The final choice is to provide a wrapper object and export an instance of 
the wrapper, which minimizes access to the contained object. The System 
.Collections.ObjectModel.ReadOnlyCollection<T> type is the standard 
way to wrap a collection and export a read-only version of that data:

public class MyBusinessObject 

{

// Read Only property providing access to a 

// private data member: 

private BindingList<ImportantData> listOfData = new

BindingList<ImportantData>(); 

public IBindingList BindingData 

{

get { return listOfData; } 

} 

public ReadOnlyCollection<ImportantData> CollectionOfData 

{

get 

{

return new ReadOnlyCollection<ImportantData>

(listOfData); 

}

} 

// other details elided

}

Exposing reference types through your public interface allows users of 
your object to modify its internals without going through the methods 
and properties you’ve defined. That seems counterintuitive, which makes 
it a common mistake. You need to modify your class’s interfaces to take 
into account that you are exporting references rather than values. If you 
simply return internal data, you’ve given access to those contained mem-
bers. Your clients can call any method that is available in your members. 
You limit that access by exposing private internal data using interfaces, 
wrapper objects, or value types.

Item 27: Prefer Making Your Types Serializable

Persistence is a core feature of a type. It’s one of those basic elements that no 
one notices until you neglect to support it. If your type does not support
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serialization properly, you create more work for all developers who intend 
to use your types as a member or base class. When your type does not sup-
port serialization, they must work around it, adding their own imple-
mentation of a standard feature. It’s unlikely that clients could properly 
implement serialization for your types without access to private details in 
your types. If you don’t supply serialization, it’s difficult or impossible for 
users of your class to add it.

Instead, prefer adding serialization to your types when practical. It should 
be practical for all types that do not represent UI widgets, windows, or 
forms. The extra perceived work is no excuse. .NET serialization support 
is so simple that you don’t have any reasonable excuse not to support it. In 
many cases, adding the Serializable attribute is enough:

[Serializable] 

public class MyType 

{

private string label; 

private int value;

}

Adding the Serializable attribute works because all the members of this 
type are serializable: string and int both support .NET serialization. The 
reason it’s important for you to support serialization wherever possible 
becomes obvious when you add another field of a custom type:

[Serializable] 

public class MyType 

{

private string label; 

private int value;

private OtherClass otherThing; 

}

The Serializable attribute works here only if the OtherClass type supports 
.NET serialization. If OtherClass is not serializable, you get a runtime error 
and you have to write your own code to serialize MyType and the 
OtherClass object inside it. That’s just not possible without extensive 
knowledge of the internals defined in OtherClass.

.NET serialization saves all member variables in your object to the output 
stream. In addition, the .NET serialization code supports arbitrary object
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graphs: Even if you have circular references in your objects, the serialize 
and deserialize methods will save and restore each actual object only once. 
The .NET Serialization Framework also will re-create the web of refer-
ences when the web of objects is deserialized. Any web of related objects 
that you have created is restored correctly when the object graph is dese-
rialized. A last important note is that the Serializable attribute supports 
both binary and SOAP serialization. All the techniques in this item will 
support both serialization formats. But remember that this works only if 
all the types in an object graph support serialization. That’s why it’s 
important to support serialization in all your types. As soon as you leave 
out one class, you create a hole in the object graph that makes it harder for 
anyone using your types to support serialization easily. Before long, every-
one is writing their own serialization code again.

Adding the Serializable attribute is the simplest technique to support seri-
alizable objects. But the simplest solution is not always the right solution. 
Sometimes, you do not want to serialize all the members of an object: 
Some members might exist only to cache the result of a lengthy operation. 
Other members might hold on to runtime resources that are needed only 
for in-memory operations. You can manage these possibilities using attri -
butes as well. Attach the [NonSerialized] attribute to any of the data mem-
bers that should not be saved as part of the object state. This marks them 
as nonserializable attributes:

[Serializable] 

public class MyType 

{

private string label;

[NonSerialized]

private int cachedValue;

private OtherClass otherThing; 

}

Nonserialized members add a little more work for you, the class designer. 
The serialization APIs do not initialize nonserialized members for you dur-
ing the deserialization process. None of your types’ constructors is called, 
so the member initializers are not executed, either. When you use the seri-
alizable attributes, nonserialized members get the default system-initialized 
value: 0 or null. When the default 0 initialization is not right, you need to
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implement the IDeserializationCallback interface to initialize these non-
serializable members. IDeserializationCallback contains one method: 
OnDeserialization. The framework calls this method after the entire object 
graph has been deserialized. You use this method to initialize any non-
serialized members in your object. Because the entire object graph has 
been read, you know that any function you might want to call on your 
object or any of its serialized members is safe. Unfortunately, it’s not fool-
proof. After the entire object graph has been read, the framework calls 
OnDeserialization on every object in the graph that supports the 
IDeserializationCallback interface. Any other objects in the object graph 
can call your object’s public members when processing OnDeserialization. 
If they go first, your object’s nonserialized members are null, or 0. Order 
is not guaranteed, so you must ensure that all your public methods han-
dle the case in which nonserialized members have not been initialized.

So far, you’ve learned about why you should add serialization to all your 
types: Nonserializable types cause more work when used in types that 
should be serialized. You’ve learned about the simplest serialization meth-
ods using attributes, including how to initialize nonserialized members.

Serialized data has a way of living on between versions of your program. 
Adding serialization to your types means that one day you will need to 
read an older version. The code generated by the Serializable attribute 
throws exceptions when it finds fields that have been added or removed 
from the object graph. When you find yourself ready to support multiple 
versions and you need more control over the serialization process, use the 
ISerializable interface. This interface defines the hooks for you to cus-
tomize the serialization of your types. The methods and storage that the 
ISerializable interface uses are consistent with the methods and storage 
that the default serialization methods use. That means you can use the 
serialization attributes when you create a class. If it ever becomes necessary 
to provide your own extensions, you then add support for the ISerializable 
interface.

As an example, consider how you would support MyType, version 2, when 
you add another field to your type. Simply adding a new field produces a 
new format that is incompatible with the previously stored versions on 
disk:

[Serializable] 

public class MyType 

{
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private MyType(SerializationInfo info,

StreamingContext cntxt) 

{ 

}

private string label;

[NonSerialized] 

private int value;

private OtherClass otherThing;

// Added in version 2 

// The runtime throws Exceptions 

// with it finds this field missing in version 1.0 

// files.

private int value2; 

}

You add support for ISerializable to address this behavior. The ISerializable 
interface defines one method, but you have to implement two. ISerializable 
defines the GetObjectData() method that is used to write data to a stream. 
In addition, you must provide a serialization constructor to initialize the 
object from the stream:

private MyType(SerializationInfo info,

StreamingContext cntxt)

The serialization constructor in the following class shows how to read a 
previous version of the type and read the current version consistently with 
the default implementation generated by adding the Serializable attribute:

using global::System.Runtime.Serialization; 

using global::System.Security.Permissions; 

[Serializable] 

public sealed class MyType : ISerializable 

{

private string label;

[NonSerialized] 

private int value;
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private OtherClass otherThing;

private const int DEFAULT_VALUE = 5; 

private int value2;

// public constructors elided.

// Private constructor used only 

// by the Serialization framework. 

private MyType(SerializationInfo info,

StreamingContext cntxt) 

{

label = info.GetString("label"); 

otherThing = (OtherClass)info.GetValue("otherThing",

typeof(OtherClass)); 

try 

{

value2 = info.GetInt32("value2"); 

} 

catch (SerializationException) 

{

// Found version 1. 

value2 = DEFAULT_VALUE;

} 

}

[SecurityPermissionAttribute(SecurityAction.Demand,

SerializationFormatter = true)] 

void ISerializable.GetObjectData(SerializationInfo inf,

StreamingContext cxt) 

{

inf.AddValue("label", label); 

inf.AddValue("otherThing", otherThing); 

inf.AddValue("value2", value2);

} 

}

The serialization stream stores each item as a key/value pair. The code gen-
erated from the attributes uses the variable name as the key for each value. 
When you add the ISerializable interface, you must match the key name
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and the order of the variables. The order is the order declared in the class. 
(By the way, this fact means that rearranging the order of variables in a class 
or renaming variables breaks the compatibility with files already created.)

Also, I have demanded the SerializationFormatter security permission. 
GetObjectData could be a security hole into your class if it is not properly 
protected. Malicious code could create a StreamingContext, get the values 
from an object using GetObjectData, serialize modified versions to 
another SerializationInfo, and reconstitute a modified object. It would 
allow a malicious developer to access the internal state of your object, 
modify it in the stream, and send the changes back to you. Demanding the 
SerializationFormatter permission seals this potential hole. It ensures that 
only properly trusted code can access this routine to get at the internal 
state of the object.

But there’s a downside to implementing the ISerializable interface. You 
can see that I made MyType sealed earlier. That forces it to be a leaf class. 
Implementing the ISerializable interface in a base class complicates serial-
ization for all derived classes. Implementing ISerializable means that every 
derived class must create the protected constructor for deserialization. In 
addition, to support nonsealed classes, you need to create hooks in the 
GetObjectData method for derived classes to add their own data to the 
stream. The compiler does not catch either of these errors. The lack of a 
proper constructor causes the runtime to throw an exception when read-
ing a derived object from a stream. The lack of a hook for GetObjectData() 
means that the data from the derived portion of the object never gets saved 
to the file. No errors are thrown. I’d like the recommendation to be “imple-
ment Serializable in leaf classes.” I did not say that because that won’t 
work. Your base classes must be serializable for the derived classes to be 
serializable. To modify MyType so that it can be a serializable base class, 
you change the serializable constructor to protected and create a virtual 
method that derived classes can override to store their data:

using global::System.Runtime.Serialization; 

using global::System.Security.Permissions;

[Serializable] 

public class MyType : ISerializable 

{

private string label;
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[NonSerialized] 

private int value;

private OtherClass otherThing;

private const int DEFAULT_VALUE = 5; 

private int value2;

// public constructors elided.

// Protected constructor used only by the 

// Serialization framework. 

protected MyType(SerializationInfo info,

StreamingContext cntxt) 

{

label = info.GetString("label"); 

otherThing = (OtherClass)info.GetValue("otherThing",

typeof(OtherClass)); 

try 

{

value2 = info.GetInt32("value2"); 

} 

catch (SerializationException e) 

{

// Found version 1. 

value2 = DEFAULT_VALUE;

} 

}

[SecurityPermissionAttribute(SecurityAction.Demand,

SerializationFormatter = true)] 

void ISerializable.GetObjectData(

SerializationInfo inf, 

StreamingContext cxt)

{

inf.AddValue("label", label); 

inf.AddValue("otherThing", otherThing); 

inf.AddValue("value2", value2);

WriteObjectData(inf, cxt); 

}
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// Overridden in derived classes to write 

// derived class data:

protected virtual void

WriteObjectData(

SerializationInfo inf,

StreamingContext cxt)

{

// Should be an abstract method,

// if MyType should be an abstract class.

} 

}

A derived class would provide its own serialization constructor and over-
ride the WriteObjectData method:

public class DerivedType : MyType 

{

private int derivedVal;

private DerivedType(SerializationInfo info,

StreamingContext cntxt) : 

base(info, cntxt)

{

derivedVal = info.GetInt32("_DerivedVal"); 

}

protected override void WriteObjectData(

SerializationInfo inf, 

StreamingContext cxt)

{

inf.AddValue("_DerivedVal", derivedVal); 

}

}

The order of writing and retrieving values from the serialization stream 
must be consistent. I’ve chosen to read and write the base class values first 
because I believe it is simpler. If your read and write code does not serial-
ize the entire hierarchy in the exact same order, your serialization code 
won’t work.

None of the code samples in this item use automatic properties. That’s by 
design. Automatic properties use a compiler-generated backing field for
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their storage. You can’t access that backing field, because the field name is 
an invalid C# token (it is a valid CLR symbol). That makes binary seriali-
zation very brittle for types that use automatic properties. You cannot write 
your own serialization constructor, or GetObjectData methods to access 
those backing fields. Serialization will work for the simplest types, but any 
derived classes, or future additional fields will break code. And, by the time 
you discover the problem, you’ll have persisted the original version in the 
field, and you won’t be able to fix the issue. Anytime you add the Serializable 
attribute to a class, you must concretely implement the properties with 
your own backing store.

The .NET Framework provides a simple, standard algorithm for serializ-
ing your objects. If your type should be persisted, you should follow the 
standard implementation. If you don’t support serialization in your types, 
other classes that use your type can’t support serialization, either. Make it 
as easy as possible for clients of your class. Use the default methods when 
you can, and implement the ISerializable interface when the default attrib-
utes don’t suffice.

Item 28: Create Large-Grain Internet Service APIs

The cost and inconvenience of a communication protocol dictates how 
you should use the medium. You communicate differently using the 
phone, fax, letters, and email. Think back on the last time you ordered 
from a catalog. When you order by phone, you engage in a question-and-
answer session with the sales staff:

“Can I have your first item?” 
“Item number 123-456.” 
“How many would you like?” 
“Three.”

This conversation continues until the sales staff has your entire order, your 
billing address, your credit card information, your shipping address, and 
any other information necessary to complete the transaction. It’s com-
forting on the phone to have this back-and-forth discussion. You never 
give long soliloquies with no feedback. You never endure long periods of 
silence wondering if the salesperson is still there.

Contrast that with ordering by fax. You fill out the entire document and fax 
the completed document to the company. One document, one transac-
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tion. You do not fill out one product line, fax it, add your address, fax again, 
add your credit card number, and fax again.

This illustrates the common pitfalls of a poorly defined service interface. 
Whether you use a Web service, .NET Remoting, or Azure-based pro-
gramming, you must remember that the most expensive part of the oper-
ation comes when you transfer objects between distant machines. You 
must stop creating remote APIs that are simply a repackaging of the same 
local interfaces that you use. It works, but it reeks of inefficiency. It’s using 
the phone call metaphor to process your catalog request via fax. Your appli-
cation waits for the network each time you make a round-trip to pass a 
new piece of information through the pipe. The more granular the API is, 
the higher percentage of time your application spends waiting for data to 
return from the server.

Instead, create Web-based interfaces based on serializing documents or 
sets of objects between client and server. Your remote communications 
should work like the order form you fax to the catalog company: The client 
machine should be capable of working for extended periods of time with-
out contacting the server. Then, when all the information to complete the 
transaction is filled in, the client can send the entire document to the 
server. The server’s responses work the same way: When information gets 
sent from the server to the client, the client receives all the information 
necessary to complete all the tasks at hand.

Sticking with the customer order metaphor, we’ll design a customer order-
processing system that consists of a central server and desktop clients 
accessing information via Web services. One class in the system is the cus-
tomer class. If you ignore the transport issues, the customer class might 
look something like this, which allows client code to retrieve or modify 
the name, shipping address, and account information:

public class Customer 

{

public Customer() 

{ 

}

// Properties to access and modify customer fields: 

public string Name { get; set; }

public Address ShippingAddr { get; set; }
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public Account CreditCardInfo { get; set; } 

}

The customer class does not contain the kind of API that should be called 
remotely. Calling a remote customer results in excessive traffic between 
the client and the server:

// create customer on the server. 

Customer c = Server.NewCustomer(); 

// round trip to set the name.

c.Name = dlg.Name; 

// round trip to set the addr.

c.ShippingAddr = dlg.ShippingAddr; 

// round trip to set the cc card.

c.CreditCardInfo = dlg.CreditCardInfo;

Instead, you would create a local Customer object and transfer the
 Customer to the server after all the fields have been set:

// create customer on the client.

Customer c2 = new Customer(); 

// Set local copy 

c2.Name = dlg.Name; 

// set the local addr. 

c2.ShippingAddr = dlg.ShippingAddr; 

// set the local cc card. 

c2.CreditCardInfo = dlg.CreditCardInfo; 

// send the finished object to the server. (one trip) 

Server.AddCustomer(c2);

The customer example illustrates an obvious and simple example: Trans-
fer entire objects back and forth between client and server. But to write 
efficient programs, you need to extend that simple example to include the 
right set of related objects. Making remote invocations to set a single prop-
erty of an object is too small of a granularity. But one customer might not 
be the right granularity for transactions between the client and server, 
either.

To extend this example into the real-world design issues you’ll encounter 
in your programs, we’ll make a few assumptions about the system. This 
software system supports a major online vendor with more than 1 million 
customers. Imagine that it is a major catalog ordering house and that each 
customer has, on average, 15 orders in the last year. Each telephone oper-
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ator uses one machine during the shift and must look up or create cus-
tomer records whenever he or she answers the phone. Your design task is 
to determine the most efficient set of objects to transfer between client 
machines and the server.

You can begin by eliminating some obvious choices. Retrieving every cus-
tomer and every order is clearly prohibitive: 1 million customers and 15 
million order records are just too much data to bring to each client. You’ve 
simply traded one bottleneck for another. Instead of constantly bom-
barding your server with every possible data update, you send the server a 
request for more than 15 million objects. Sure, it’s only one transaction, 
but it’s a very inefficient transaction.

Instead, consider how you can best retrieve a set of objects that can con-
stitute a good approximation of the set of data that an operator must use for 
the next several minutes. An operator will answer the phone and be inter-
acting with one customer. During the course of the phone call, that oper-
ator might add or remove orders, change orders, or modify a customer’s 
account information. The obvious choice is to retrieve one customer, with 
all orders that have been placed by that customer. The server method 
would be something like this:

public OrderDataCollection FindOrders(string customerName) 

{

// Search for the customer by name. 

// Find all orders by that customer.

}

Or is that right? Orders that have been shipped and received by the cus-
tomer are almost certainly not needed at the client machine. A better 
answer is to retrieve only the open orders for the requested customer. The 
server method would change to something like this:

public OrderData FindOpenOrders(string customerName) 

{

// Search for the customer by name. 

// Find all orders by that customer. 

// Filter out those that have already 

// been received.

}

You are still making the client machine request data at the start of each 
customer phone call. Are there ways to optimize this communication
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channel more than including orders in the customer download? We’ll add 
a few more assumptions on the business processes to give you some more 
ideas. Suppose that the call center is partitioned so that each working team 
receives calls from only one area code. Now you can modify your design 
to optimize the communication quite a bit more.

Each operator would retrieve the updated customer and order information 
for that one area code at the start of the shift. After each call, the client 
application would push the modified data back to the server, and the server 
would respond with all changes since the last time this client machine 
asked for data. The end result is that after every phone call, the operator 
sends any changes made and retrieves all changes made by any other oper-
ator in the same work group. This design means that there is one transac-
tion per phone call, and each operator should always have the right set of 
data available when he or she answers a call. It has saved one round-trip 
per call. Now the server contains two methods that would look something 
like this:

public CustomerSet RetrieveCustomerData(

AreaCode theAreaCode) 

{

// Find all customers for a given area code. 

// Foreach customer in that area code: 

// Find all orders by that customer. 

// Filter out those that have already 

// been received. 

// Return the result.

}

public CustomerSet UpdateCustomer(CustomerData 

updates, DateTime lastUpdate, AreaCode theAreaCode)

{

// First, save any updates.

// Next, get the updates: 

// Find all customers for a given area code. 

// Foreach customer in that area code: 

// Find all orders by that customer that have been 

// updated since the last time. Add those to the result. 

// Return the result.

}
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But you might still be wasting some bandwidth. Your last design works 
best when every known customer calls every day. That’s probably not true. 
If it is, your company has customer service problems that are far outside 
the scope of a software program.

How can we further limit the size of each transaction without increasing 
the number of transactions or the latency of the service rep’s responsive-
ness to a customer? You can make some assumptions about which cus-
tomers in the database are going to place calls. You track some statistics 
and find that if customers go six months without ordering, they are very 
unlikely to order again. So you stop retrieving those customers and their 
orders at the beginning of the day. That shrinks the size of the initial trans-
action. You also find that any customer who calls shortly after placing an 
order is usually inquiring about the last order. So you modify the list of 
orders sent down to the client to include only the last order rather than all 
orders. This would not change the signatures of the server methods, but it 
would shrink the size of the packets sent back to the client.

This hypothetical discussion focused on getting you to think about the 
communication between remote machines: You want to minimize both 
the frequency and the size of the transactions sent between machines. 
Those two goals are at odds, and you need to make tradeoffs between 
them. You should end up close to the center of the two extremes, but err 
toward the side of fewer, larger transactions.

Item 29: Support Generic Covariance and Contravariance

Type variance, and specifically, covariance and contravariance define the 
conditions under which one type can be substituted for another type. 
Whenever possible, you should decorate generic interfaces and delegate 
definitions to support generic covariance and contravariance. Doing so 
will enable your APIs to be used in more different ways, and safely. If you 
cannot substitute one type for another, it is called invariant.

Type variance is one of those topics that many developers have encoun-
tered but not really understood. Covariance and contravariance are two 
different forms of type substitution. A return type is covariant if you can 
substitute a more derived type than the type declared. A parameter type is 
contravariant if you can substitute a more base parameter type than the 
type declared. Object-oriented languages generally support covariance of 
parameter types. You can pass an object of a derived type to any method
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that expects a more base type. For example, Console.WriteLine() has an 
overload that takes a System.Object parameter. You can pass an instance of 
any type that derives from object. When you override an instance of a 
method that returns a System.Object, you can return anything that is 
derived from System.Object.

That common behavior led many developers to believe that generics would 
follow the same rules. You should be able to use an  IEnumerable<MyDerived 
Type> with a method that has a parameter of IEnumerable<Object>. You 
would expect that if a method returns an IEnumerable<MyDerivedType>, 
you could assign that to a variable of type IEnumerable<object>. No so. 
Prior to C# 4.0, all generic types were invariant. That meant there were 
many times when you would reasonably expect covariance or contravari-
ance with generics only to be told by the compiler that your code was 
invalid. Arrays were treated covariantly. However, Arrays do not support 
safe covariance. As of C# 4.0, new keywords are available to enable you to 
use generics covariantly and contravariantly. That makes generics much 
more useful, especially if you remember to include the in and out param-
eters where possible on generic interfaces and delegates.

Let’s begin by understanding the problems with array covariance. Con-
sider this small class hierarchy:

abstract public class CelestialBody 

{

public double Mass { get; set; } 

public string Name { get; set; } 

// elided

}

public class Planet : CelestialBody 

{

// elided 

}

public class Moon : CelestialBody 

{

// elided 

}
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public class Asteroid : CelestialBody 

{

// elided 

}

This method treats arrays of CelestialBody objects covariantly, and does so 
safely:

public static void CoVariantArray(CelestialBody[] baseItems) 

{

foreach (var thing in baseItems) 

Console.WriteLine("{0} has a mass of {1} Kg", 

thing.Name, thing.Mass);

}

This method also treats arrays of CelestialBody objects covariantly, but it 
is not safe. The assignment statement will throw an exception.

public static void UnsafeVariantArray(

CelestialBody[] baseItems) 

{

baseItems[0] = new Asteroid 

{ Name = "Hygiea", Mass = 8.85e19 };

}

You can have the same problem simply by assigning an array of a derived 
class to a variable that is an array of a base type:

CelestialBody[] spaceJunk = new Asteroid[5]; 

spaceJunk[0] = new Planet();

Treating collections as covariant means that when there is an inheritance 
relationship between two types, you can imagine there is a similar inher-
itance relationship between arrays of those two types. This isn’t a strict 
definition, but it’s a useful picture to keep in your mind. A Planet can be 
passed to any method that expects CelestialBody. That’s because Planet is 
derived from CelestialBody. Similarly, you can pass a Planet[] to any 
method that expects a CelestialBody[]. But, as the above example shows, 
that doesn’t always work the way you’d expect.

When generics were first introduced, this issue was dealt with in a rather 
draconian fashion. Generics were always treated invariantly. Generic types 
had to have an exact match. However, in C# 4.0, you can now decorate
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generic interfaces such that they can be treated covariantly, or contravari-
antly. Let’s discuss generic covariance first, and then we’ll move on to
 contravariance.

This method can be called with a List<Planet>:

public static void CoVariantGeneric( 

IEnumerable<CelestialBody> baseItems)

{

foreach (var thing in baseItems) 

Console.WriteLine("{0} has a mass of {1} Kg", 

thing.Name, thing.Mass);

}

That’s because IEnumerable<T> has been augmented to limit T to only 
output positions in its interface:

public interface IEnumerable<out T> : IEnumerable 

{

IEnumerator<T> GetEnumerator(); 

} 

public interface IEnumerator<out T> :

IDisposable, IEnumerator 

{

T Current { get; } 

// MoveNext(), Reset() inherited from IEnumerator

}

I included both the IEnumerable<T> and IEnumerator<T> definition 
here, because the IEnumerator<T> has the important restrictions. Notice 
that IEnumerator<T> now decorates the type parameter T with the out
modifier. That forces the compiler to limit T to output positions. Output 
positions are limited to function return values, property get accessors, and 
certain delegate positions.

Therefore, using IEnumerable<out T>, the compiler knows that you will 
look at every T in the sequence, but never modify the contents of the source 
sequence. Treating every Planet as a CelestialBody in this case works.

IEnumerable<T> can be covariant only because IEnumerator<T> is also 
covariant. If IEnumerable<T> returned an interface that was not declared 
as covariant, the compiler would generate an error. Covariant types must
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return either the type parameter, or an interface on the type parameter 
that is also covariant.

However, the method that replaces the first item in the list will be invari-
ant when using generics:

public static void InvariantGeneric(

IList<CelestialBody> baseItems) 

{

baseItems[0] = new Asteroid 

{ Name = "Hygiea", Mass = 8.85e19 };

}

Because IList<T> is neither decorated with the in or out modifier on T, 
you must use the exact type match.

Of course, you can create Contravariant generic interfaces and delegates as 
well. Substitute the in modifier for the out modifier. That instructs the 
compiler that the type parameter may only appear in input positions. The 
.NET Framework has added the in modifier to the IComparable<T> 
interface:

public interface IComparable<in T> 

{

int CompareTo(T other); 

}

That means you could make CelestialBody implement IComparable<T>, 
using an object’s mass. It would compare two Planets, a Planet and a 
Moon, a Moon and an Asteroid, or any other combination. By comparing 
the mass of the objects, that’s a valid comparison.

You’ll notice that IEquatable<T> is invariant. By definition, a Planet can-
not be equal to a Moon. They are different types, so it makes no sense. It 
is necessary, if not sufficient, for two objects to be of the same type if they 
are equal (see Item 6).

Type parameters that are contravariant can only appear as method param-
eters, and some locations in delegate parameters.

By now, you’ve probably noticed that I’ve used the phrase “some locations 
in delegate parameters” twice. Delegate definitions can be covariant or 
contravariant as well. It’s usually pretty simple: Method parameters are
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contravariant (in), and method return types are covariant (out). The BCL 
updated many of their delegate definitions to include variance:

public delegate TResult Func<out TResult>(); 

public delegate TResult Func<in T, out TResult>(T arg); 

public delegate TResult Func<in T1, T2, out TResult>(T1 arg1,

T2 arg2); 

public delegate void Action<in T>(T arg); 

public delegate void Action<in T1, in T2>(T1 arg1, T2 arg2); 

public delegate void Action<in T1, in T2, T3>(T1 arg1,

T2 arg2, T3 arg3);

Again, this probably isn’t too hard. But, when you mix them, things start 
to get to be mind benders. You already saw that you cannot return invari-
ant interfaces from covariant interfaces. You can’t use delegates to get 
around the covariant and contravariant restrictions, either.

Delegates have a tendency to “flip” the covariance and contravariance in 
an interface if you’re not careful. Here are a couple examples:

public interface ICovariantDelegates<out T> 

{

T GetAnItem();

Func<T> GetAnItemLater(); 

void GiveAnItemLater(Action<T> whatToDo);

}

public interface IContravariantDelegates<in T> 

{

void ActOnAnItem(T item); 

void GetAnItemLater(Func<T> item); 

Action<T> ActOnAnItemLater();

}

I’ve named the methods in these interfaces specifically to show why it 
works the way it does. Look closely at the ICovariantDelegate interface 
definition. GetAnItemLater() is just a way to retrieve an item lazily. The 
caller can invoke the Func<T> returned by the method later to retrieve a 
value. T still exists in the output position. That probably still makes sense. 
The GetAnItemLater() method probably is a bit more confusing. Here, 
you’re method takes an delegate that will accept a T object whenever you 
call it. So, even though Action<in T> is covariant, its position in the
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 ICovariantDelegate interface means that it is actually a means by which T 
objects are returned from an ICovariantDelegate<T> implementing 
object. It may look like it should be contravariant, but it is covariant with 
respect to the interface.

IContravariantDelegate<T> is similar but shows how you can use dele-
gates in a contravariant interface. Again, the ActOnAnItem method should 
be obvious. The ActOnAnItemLater() method is just a little more com-
plicated. You’re returning a method that will accept a T object sometime 
later. That last method, once again, may cause some confusion. It’s the 
same concept as with the other interface. The GetAnItemLater() method 
accepts a method that will return a T object sometime later. Even though 
Func<out T> is declared covariant, its use is to bring an input to the object 
implementing IContravariantDelegate. Its use is contravariant with respect 
to the IContravariantDelegate.

It certainly can get complicated describing exactly how covariance and 
contravariance work. Thankfully, now the language supports decorating 
generic interfaces and delegates with in (contravariant) and out (covari-
ant) modifiers. You should decorate any interfaces and delegates you define 
with the in or out modifiers wherever possible. Then, the compiler can 
correct any possible misuses of the variance you’ve defined. The compiler 
will catch it both in your interface and delegate definitions, and it will 
detect any misuse of the types you’ve created.
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4 ❘ Working with the Framework

179

My friend and colleague Martin Shoemaker crated a roundtable called “Do 
I Have to Write That .NET Code?” shortly after .NET was first released in 
2002. It was a great roundtable back then, and it’s much more relevant 
now. The .NET Framework has grown and now includes many more new 
classes and features than it did back then. It’s important that you don’t 
create features that already exist.

The .NET Framework is a rich class library. The more you learn about the 
framework, the less code you need to write yourself. The framework library 
will do more of the work for you. Sadly, the Base Class Library must now 
contend with the problems associated with release 4. There are better ways 
to solve problems than existed in release 1. But the framework team can’t 
just delete those old APIs and classes. It may not even make sense to mark 
those older APIs as deprecated. They still work, and it is not in your best 
interest to rewrite working code. But when you’re creating new code, you 
should reach for the best tool that exists now. This chapter shows you tech-
niques to get the most out of the .NET Framework now, in version 4.0. 
Other items help you choose the best option when multiple choices are 
available in the framework. Still other items explain some of the techniques 
you should use if you want your classes to operate well with the classes 
created by the framework designers.

Item 30: Prefer Overrides to Event Handlers

Many .NET classes provide two different ways to handle events from the 
system. You can attach an event handler, or you can override a virtual
function in the base class. Why provide two ways of doing the same thing? 
Because different situations call for different methods, that’s why. Inside 
derived classes, you should always override the virtual function. Limit 
your use of the event handlers to responding to events in unrelated objects.
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You write a nifty Windows Presentation Foundation (WPF) application 
that needs to respond to mouse down events. In your form class, you can 
choose to override the OnMouseDown() method:

public partial class Window1 : Window 

{

// other code elided

public Window1() 

{

InitializeComponent(); 

}

protected override void OnMouseDown(

MouseButtonEventArgs e) 

{

DoMouseThings(e); 

base.OnMouseDown(e);

} 

}

Or, you could attach an event handler (which requires both C# and 
XAML):

<!-- XAML File --> 

<Window x:Class="Item36_OverridesAndEvent.Window1"

xmlns=

"http://schemas.microsoft.com/winfx/2006/xaml/presentation" 

xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

Title="Window1" Height="300" Width="300" 

MouseDown="OnMouseDown">

<Grid>

</Grid> 

</Window>

// C Sharp file: 

public partial class Window1 : Window 

{

// other code elided
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public Window1() 

{

InitializeComponent(); 

}

private void OnMouseDown(object sender,

MouseButtonEventArgs e) 

{

DoMouseThings(e); 

}

private void DoMouseThings(MouseButtonEventArgs e) 

{

throw new NotImplementedException(); 

}

}

The first solution is preferred. This may seem surprising given the empha-
sis on declarative code in WPF applications. Even so, if the logic must be 
implemented in code, you should use the virtual method. If an event han-
dler throws an exception, no other handlers in the chain for that event are 
called (see Items 24 and 25). Some other ill-formed code prevents the sys-
tem from calling your event handler. By overriding the protected  virtual
function, your handler gets called first. The base class version of the
virtual function is responsible for calling any event handlers attached to 
the particular event. That means that if you want the event handlers called 
(and you almost always do), you must call the base class. In some rare 
cases, you will want to replace the default behavior instead of calling the
base class version so that none of the event handlers gets called. You can’t 
guarantee that all the event handlers will be called because some ill-formed 
event handler might throw an exception, but you can guarantee that your 
derived class’s behavior is correct.

Using the override is more efficient than attaching the event handler. You 
will remember from Item 25 that events are built on top of multicast del-
egates. That enables any event source to have multiple observers. The 
event-handling mechanism takes more work for the processor because it 
must examine the event to see if any event handlers have been attached. If 
so, it must iterate the entire invocation list, which may contain any num-
ber of target methods. Each method in the event invocation list must be
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called. Determining whether there are event handlers and iterating each at 
runtime takes more execution time than invoking one virtual function.

If that’s not enough for you, examine the first listing in this item again. 
Which is clearer? Overriding a virtual function has one function to exam-
ine and modify if you need to maintain the form. The event mechanism 
has two points to maintain: the event handler function and the code that 
wires up the event. Either of these could be the point of failure. One func-
tion is simpler.

Okay, I’ve been giving all these reasons to use the overrides and not use the 
event handlers. The .NET Framework designers must have added events 
for a reason, right? Of course they did. Like the rest of us, they’re too busy 
to write code nobody uses. The overrides are for derived classes. Every 
other class must use the event mechanism. That also means declarative 
actions defined in the XAML file will be accessed through the event han-
dlers. In this example, your designer may have actions that are supposed 
to occur on a MouseDown event. The designer will create XAML declara-
tions for those behaviors. Those behaviors will be accessed using events 
on the form. You could redefine all that behavior in your code, but that’s 
way too much work to handle one event. It only moves the problem from 
the designer’s hands to yours. You clearly want designers doing design 
work instead of you. The obvious way to handle that is to create an event 
and access the XAML declarations created by a design tool. So, in the end, 
you have created a new class to send an event to the form class. It would 
be simpler to just attach the form’s event handler to the form in the first 
place. After all, that’s why the .NET Framework designers put those events 
in the forms.

Another reason for the event mechanism is that events are wired up at 
runtime. You have more flexibility using events. You can wire up different 
event handlers, depending on the circumstances of the program. Suppose 
that you write a drawing program. Depending on the state of the program, 
a mouse down might start drawing a line, or it might select an object. 
When the user switches modes, you can switch event handlers. Different 
classes, with different event handlers, handle the event depending on the 
state of the application.

Finally, with events, you can hook up multiple event handlers to the same 
event. Imagine the same drawing program again. You might have multiple 
event handlers hooked up on the MouseDown event. The first would per-
form the particular action. The second might update the status bar or
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update the accessibility of different commands. Multiple actions can take 
place in response to the same event.

When you have one function that handles one event in a derived class, the 
override is the better approach. It is easier to maintain, more likely to be 
correct over time, and more efficient. Reserve the event handlers for other 
uses. Prefer overriding the base class implementation to attaching an event 
handler.

Item 31: Implement Ordering Relations with IComparable<T> 
and IComparer<T>

Your types need ordering relationships to describe how collections should 
be sorted and searched. The .NET Framework defines two interfaces that 
describe ordering relationships in your types: IComparable<T> and 
IComparer<T>. IComparable defines the natural order for your types. A 
type implements IComparer to describe alternative orderings. You can 
define your own implementations of the relational operators (<, >, <=, 
>=) to provide type-specific comparisons, to avoid some runtime ineffi-
ciencies in the interface implementations. This item discusses how to 
implement ordering relations so that the core .NET Framework orders 
your types through the defined interfaces and so that other users get the 
best performance from these operations.

The IComparable interface contains one method: CompareTo(). This 
method follows the long-standing tradition started with the C library 
function strcmp: Its return value is less than 0 if the current object is less 
than the comparison object, 0 if they are equal, and greater than 0 if the 
current object is greater than the comparison object. IComparable<T> 
will be used by most newer APIs in the .NET landscape. However, some 
older APIs will use the classic IComparable interface. Therefore, when you 
implement IComparable<T>, you should also implement IComparable. 
IComparable takes parameters of type System.Object. You need to per-
form runtime type checking on the argument to this function. Every time 
comparisons are performed, you must reinterpret the type of the argu-
ment:

public struct Customer : IComparable<Customer>, IComparable 

{

private readonly string name;
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public Customer(string name) 

{

this.name = name; 

}

#region IComparable<Customer> Members 

public int CompareTo(Customer other) 

{

return name.CompareTo(other.name); 

} 

#endregion

#region IComparable Members 

int IComparable.CompareTo(object obj) 

{

if (!(obj is Customer)) 

throw new ArgumentException(

"Argument is not a Customer", "obj"); 

Customer otherCustomer = (Customer)obj; 

return this.CompareTo(otherCustomer);

} 

#endregion

}

Notice that IComparable is explicitly implemented in this structure. That 
ensures that the only code that will call the object-typed version of 
CompareTo() is code that was written for the previous interface. There’s 
just too much to dislike about the classic version of IComparable. You’ve 
got to check the runtime type of the argument. Incorrect code could legally 
call this method with anything as the argument to the CompareTo method. 
More so, proper arguments must be boxed and unboxed to provide the 
actual comparison. That’s an extra runtime expense for each compare. 
Sorting a collection will make, on average n lg(n) comparisons of your object 
using the IComparable.Compare method. Each of those will cause three 
boxing and unboxing operations. For an array with 1,000 points, that will 
be more than 20,000 boxing and unboxing operations, on average: n lg(n) 
is almost 7,000, and there are 3 box and unbox operations per comparison.

You may be wondering why you should implement the nongeneric 
IComparable interface at all. There are two reasons. First, there’s simple 
backward compatibility. Your types will interact with code created before
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.NET 2.0. That means supporting the pregeneric interface. Second, even 
more modern code will avoid generics when it’s based on reflection. 
Reflection using generics is possible, but it’s much more difficult than 
reflection using nongeneric type definitions. Supporting the nongeneric 
version of the IComparable interface makes your type easier to use for 
algorithms making use of reflection.

Because the classic IComparable.CompareTo() is now an explicit interface 
implementation, it can be called only through an IComparable reference. 
Users of your customer struct will get the type-safe comparison, and the 
unsafe comparison is inaccessible. The following innocent mistake no 
longer compiles:

Customer c1;

Employee e1; 

if (c1.CompareTo(e1) > 0)

Console.WriteLine("Customer one is greater");

It does not compile because the arguments are wrong for the public 
Customer.CompareTo(Customer right) method. The IComparable 
.CompareTo(object right) method is not accessible. You can access the 
IComparable method only by explicitly casting the reference:

Customer c1 = new Customer();

Employee e1 = new Employee(); 

if ((c1 as IComparable).CompareTo(e1) > 0)

Console.WriteLine("Customer one is greater");

When you implement IComparable, use explicit interface implementation 
and provide a strongly typed public overload. The strongly typed overload 
improves performance and decreases the likelihood that someone will mis-
use the CompareTo method. You won’t see all the benefits in the Sort func-
tion that the .NET Framework uses because it will still access CompareTo() 
through the interface pointer (see Item 22), but code that knows the type 
of both objects being compared will get better performance.

We’ll make one last small change to the Customer struct. The C# lan-
guage lets you overload the standard relational operators. Those should 
make use of the type-safe CompareTo() method:

public struct Customer : IComparable<Customer>, IComparable 

{

private readonly string name;
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public Customer(string name) 

{

this.name = name; 

}

#region IComparable<Customer> Members 

public int CompareTo(Customer other) 

{

return name.CompareTo(other.name); 

} 

#endregion

#region IComparable Members 

int IComparable.CompareTo(object obj) 

{

if (!(obj is Customer)) 

throw new ArgumentException(

"Argument is not a Customer", "obj"); 

Customer otherCustomer = (Customer)obj; 

return this.CompareTo(otherCustomer);

} 

#endregion

// Relational Operators. 

public static bool operator <(Customer left,

Customer right) 

{

return left.CompareTo(right) < 0; 

} 

public static bool operator <=(Customer left,

Customer right) 

{

return left.CompareTo(right) <= 0; 

} 

public static bool operator >(Customer left,

Customer right) 

{

return left.CompareTo(right) > 0; 

}
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public static bool operator >=(Customer left,

Customer right) 

{

return left.CompareTo(right) >= 0; 

}

}

That’s all for the standard order of customers: by name. Later, you must 
create a report sorting all customers by revenue. You still need the normal 
comparison functionality defined by the Customer struct, sorting them 
by name. Most APIs developed after generics became part of the .NET 
Framework will ask for a Comparison<T> delegate to perform some other 
sort. It’s simple to create static properties in the Customer type that pro-
vide other comparison orders. For example, this delegate compares the 
revenue generated by two customers:

public static Comparison<Customer> CompareByReview 

{

get 

{

return (left,right) => 

left.revenue.CompareTo(right.revenue);

} 

}

Older libraries will ask for this kind of functionality using the IComparer 
interface. IComparer provides the standard way to provide alternative 
orders for a type without using generics. Any of the methods delivered in 
the 1.x .NET FCL that work on IComparable types provide overloads that 
order objects through IComparer. Because you authored the Customer
struct, you can create this new class (RevenueComparer) as a private 
nested class inside the Customer struct. It gets exposed through a static 
property in the Customer struct:

public struct Customer : IComparable<Customer>, IComparable 

{

private readonly string name; 

private double revenue;

public Customer(string name, double revenue) 

{

this.name = name;
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this.revenue = revenue; 

}

#region IComparable<Customer> Members 

public int CompareTo(Customer other) 

{

return name.CompareTo(other.name); 

} 

#endregion

#region IComparable Members 

int IComparable.CompareTo(object obj) 

{

if (!(obj is Customer)) 

throw new ArgumentException(

"Argument is not a Customer", "obj");

Customer otherCustomer = (Customer)obj; 

return this.CompareTo(otherCustomer);

} 

#endregion

// Relational Operators. 

public static bool operator <(Customer left,

Customer right) 

{

return left.CompareTo(right) < 0; 

} 

public static bool operator <=(Customer left,

Customer right) 

{

return left.CompareTo(right) <= 0; 

} 

public static bool operator >(Customer left,

Customer right) 

{

return left.CompareTo(right) > 0; 

} 

public static bool operator >=(Customer left,

Customer right) 

{
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return left.CompareTo(right) >= 0; 

}

private static RevenueComparer revComp = null;

// return an object that implements IComparer

// use lazy evaluation to create just one.

public static IComparer<Customer> RevenueCompare

{

get

{

if (revComp == null)

revComp = new RevenueComparer();

return revComp;

}

}

public static Comparison<Customer> CompareByReview

{

get

{

return (left,right) => 

left.revenue.CompareTo(right.revenue);

}

}

// Class to compare customers by revenue.

// This is always used via the interface pointer,

// so only provide the interface override.

private class RevenueComparer : IComparer<Customer>

{

#region IComparer<Customer> Members

int IComparer<Customer>.Compare(Customer left,

Customer right)

{

return left.revenue.CompareTo(

right.revenue);

}

#endregion 

}

}
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The last version of the Customer struct, with the embedded Revenue-
Comparer, lets you order a collection of customers by name, the natural 
order for customers, and provides an alternative order by exposing a class 
that implements the IComparer interface to order customers by revenue. 
If you don’t have access to the source for the Customer class, you can still 
provide an IComparer that orders customers using any of its public prop-
erties. You should use that idiom only when you do not have access to the 
source for the class, as when you need a different ordering for one of the 
classes in the .NET Framework.

Nowhere in this item did I mention Equals() or the == operator (see Item
6). Ordering relations and equality are distinct operations. You do not need 
to implement an equality comparison to have an ordering relation. In fact, 
reference types commonly implement ordering based on the object con-
tents, yet implement equality based on object identity. CompareTo() 
returns 0, even though Equals() returns false. That’s perfectly legal. Equal-
ity and ordering relations are not necessarily the same.

IComparable and IComparer are the standard mechanisms for providing 
ordering relations for your types. IComparable should be used for the 
most natural ordering. When you implement IComparable, you should 
overload the comparison operators (<, >, <=, >=) consistently with our 
IComparable ordering. IComparable.CompareTo() uses System.Object 
parameters, so you should also provide a type-specific overload of the 
CompareTo() method. IComparer can be used to provide alternative 
orderings or can be used when you need to provide ordering for a type 
that does not provide it for you.

Item 32: Avoid ICloneable

ICloneable sounds like a good idea: You implement the ICloneable inter-
face for types that support copies. If you don’t want to support copies, 
don’t implement it. But your type does not live in a vacuum. Your decision 
to support ICloneable affects derived types as well. Once a type supports 
ICloneable, all its derived types must do the same. All its member types 
must also support ICloneable or have some other mechanism to create a 
copy. Finally, supporting deep copies is very problematic when you create 
designs that contain webs of objects. ICloneable finesses this problem in 
its official definition: It supports either a deep or a shallow copy. A shallow 
copy creates a new object that contains copies of all member variables. If 
those member variables are reference types, the new object refers to the
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same object that the original does. A deep copy creates a new object that 
copies all member variables as well. All reference types are cloned recur-
sively in the copy. In built-in types, such as integers, the deep and shallow 
copies produce the same results. Which one does a type support? That 
depends on the type. But mixing shallow and deep copies in the same 
object causes quite a few inconsistencies. When you go wading into the 
ICloneable waters, it can be hard to escape. Most often, avoiding ICloneable 
altogether makes a simpler class. It’s easier to use, and it’s easier to
 implement.

Any value type that contains only built-in types as members does not need 
to support ICloneable; a simple assignment copies all the values of the
struct more efficiently than Clone(). Clone() must box its return so that 
it can be coerced into a System.Object reference. The caller must perform 
another cast to extract the value from the box. You’ve got enough to do. 
Don’t write a Clone() function that replicates an assignment.

What about value types that contain reference types? The most obvious 
case is a value type that contains a string:

public struct ErrorMessage 

{

private int errCode; 

private int details; 

private string msg;

// details elided 

}

string is a special case because this class is immutable. If you assign an 
error message object, both error message objects refer to the same string.
This does not cause any of the problems that might happen with a general 
reference type. If you change the msg variable through either reference, 
you create a new string object (see Item 16). 

The general case of creating a struct that contains arbitrary reference 
variables is more complicated. It’s also far rarer. The built-in assignment 
for the struct creates a shallow copy, with both structs referring to the 
same object. To create a deep copy, you need to clone the contained reference 
type, and you need to know that the reference type supported a deep copy 
with its Clone() method. Even then, that will only work if the contained 
reference type also supports ICloneable, and its Clone() method creates a 
deep copy.
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Now let’s move on to reference types. Reference types could support the 
ICloneable interface to indicate that they support either shallow or deep 
copying. You could add support for ICloneable judiciously because doing 
so mandates that all classes derived from your type must also support 
ICloneable. Consider this small hierarchy:

class BaseType : ICloneable 

{

private string label = "class name"; 

private int[] values = new int[10];

public object Clone() 

{

BaseType rVal = new BaseType(); 

rVal.label = label; 

for (int i = 0; i < values.Length; i++)

rVal.values[i] = values[i]; 

return rVal;

} 

}

class Derived : BaseType 

{

private double[] dValues = new double[10];

static void Main(string[] args) 

{

Derived d = new Derived(); 

Derived d2 = d.Clone() as Derived;

if (d2 == null)

Console.WriteLine("null"); 

}

}

If you run this program, you will find that the value of d2 is null. The 
Derived class does inherit ICloneable.Clone() from BaseType, but that 
implementation is not correct for the Derived type: It only clones the base 
type. BaseType.Clone() creates a BaseType object, not a Derived object. 
That is why d2 is null in the test program—it’s not a Derived object. How-
ever, even if you could overcome this problem, BaseType.Clone() could
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not properly copy the dValues array that was defined in Derived. When 
you implement ICloneable, you force all derived classes to implement it as 
well. In fact, you should provide a hook function to let all derived classes 
use your implementation (see Item 23). To support cloning, derived classes 
can add only member variables that are value types or reference types that 
implement ICloneable. That is a very stringent limitation on all derived 
classes. Adding ICloneable support to base classes usually creates such a 
burden on derived types that you should avoid implementing ICloneable 
in nonsealed classes.

When an entire hierarchy must implement ICloneable, you can create an 
abstract Clone() method and force all derived classes to implement it. In 
those cases, you need to define a way for the derived classes to create copies 
of the base members. That’s done by defining a protected copy constructor:

class BaseType 

{

private string label; 

private int[] values;

protected BaseType() 

{

label = "class name"; 

values = new int[10];

}

// Used by devived values to clone 

protected BaseType(BaseType right) 

{

label = right.label; 

values = right.values.Clone() as int[];

} 

}

sealed class Derived : BaseType, ICloneable 

{

private double[] dValues = new double[10];

public Derived() 

{

dValues = new double[10]; 

}
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// Construct a copy 

// using the base class copy ctor 

private Derived(Derived right) :

base(right) 

{

dValues = right.dValues.Clone() 

as double[];

}

public object Clone() 

{

Derived rVal = new Derived(this); 

return rVal;

} 

}

Base classes do not implement ICloneable; they provide a protected copy 
constructor that enables derived classes to copy the base class parts. Leaf 
classes, which should all be sealed, implement ICloneable when necessary. 
The base class does not force all derived classes to implement ICloneable, 
but it provides the necessary methods for any derived classes that want 
ICloneable support.

ICloneable does have its use, but it is the exception rather than rule. It’s sig-
nificant that the .NET Framework did not add an ICloneable<T> when it 
was updated with generic support. You should never add support for 
ICloneable to value types; use the assignment operation instead. You 
should add support for ICloneable to leaf classes when a copy operation 
is truly necessary for the type. Base classes that are likely to be used where 
ICloneable will be supported should create a protected copy constructor. 
In all other cases, avoid ICloneable.

Item 33: Use the new Modifier Only to React to Base 
Class Updates

You use the new modifier on a class member to redefine a nonvirtual mem-
ber inherited from a base class. Just because you can do something doesn’t 
mean you should, though. Redefining nonvirtual methods creates ambigu-
ous behavior. Most developers would look at these two blocks of code and 
immediately assume that they did exactly the same thing, if the two classes 
were related by inheritance:
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object c = MakeObject();

// Call through MyClass reference: 

MyClass cl = c as MyClass; 

cl.MagicMethod();

// Call through MyOtherClass reference: 

MyOtherClass cl2 = c as MyOtherClass; 

cl2.MagicMethod();

When the new modifier is involved, that just isn’t the case:

public class MyClass 

{

public void MagicMethod() 

{

// details elided. 

}

}

public class MyOtherClass : MyClass 

{

// Redefine MagicMethod for this class. 

public new void MagicMethod() 

{

// details elided 

}

}

This kind of practice leads to a lot of developer confusion. If you call the 
same function on the same object, you expect the same code to execute. The 
fact that changing the reference, the label, that you use to call the function 
changes the behavior feels very wrong. It’s inconsistent. A MyOtherClass 
object behaves differently in response to how you refer to it. The new mod-
ifier does not make a nonvirtual method into a virtual method after the fact. 
Instead, it lets you add a different method in your class’s naming scope.

Nonvirtual methods are statically bound. Any source code anywhere that 
references MyClass.MagicMethod() calls exactly that function. Nothing in 
the runtime looks for a different version defined in any derived classes. 
Virtual functions, on the other hand, are dynamically bound. The runtime 
invokes the proper function based on the runtime type of the object.
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The recommendation to avoid using the new modifier to redefine nonvir-
tual functions should not be interpreted as a recommendation to make 
everything virtual when you define base classes. A library designer makes 
a contract when making a function virtual. You indicate that any derived 
class is expected to change the implementation of virtual functions. The set 
of virtual functions defines all behaviors that derived classes are expected 
to change. The “virtual by default” design says that derived classes can 
modify all the behavior of your class. It really says that you didn’t think 
through all the ramifications of which behaviors derived classes might 
want to modify. Instead, spend the time to think through what methods 
and properties are intended as polymorphic. Make those—and only 
those—virtual. Don’t think of it as restricting the users of your class. 
Instead, think of it as providing guidance for the entry points you pro-
vided for customizing the behavior of your types.

There is one time, and one time only, when you want to use the new mod-
ifier. You add the new modifier to incorporate a new version of a base class 
that contains a method name that you already use. You’ve already got code 
that depends on the name of the method in your class. You might already 
have other assemblies in the field that use this method. You’ve created the 
following class in your library, using BaseWidget that is defined in another 
library:

public class MyWidget : BaseWidget 

{

public void NormalizeValues() 

{

// details elided. 

}

}

You finish your widget, and customers are using it. Then you find that the 
BaseWidget company has released a new version. Eagerly awaiting new 
features, you immediately purchase it and try to build your MyWidget 
class. It fails because the BaseWidget folks have added their own Normal-
izeValues method:

public class BaseWidget 

{

public void Normalizevalues() 

{
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// details elided. 

}

}

This is a problem. Your base class snuck a method underneath your class’s 
naming scope. There are two ways to fix this. You could change that 
name of your NormalizeValues method. Note that I’ve implied that 
BaseWidget.NormalizeValues() is semantically the same operation as 
MyWidget.NormalizeAllValues. If not, you should not call the base class 
implementation.

public class MyWidget : BaseWidget 

{

public void NormalizeAllValues() 

{

// details elided. 

// Call the base class only if (by luck) 

// the new method does the same operation.

base.NormalizeValues(); 

}

}

Or, you could use the new modifier:

public class MyWidget : BaseWidget 

{

public void new NormalizeValues() 

{

// details elided. 

// Call the base class only if (by luck) 

// the new method does the same operation.

base.NormalizeValues(); 

}

}

If you have access to the source for all clients of the MyWidget class, you 
should change the method name because it’s easier in the long run. How-
ever, if you have released your MyWidget class to the world, that would force 
all your users to make numerous changes. That’s where the new modifier 
comes in handy. Your clients will continue to use your NormalizeValues() 
method without changing. None of them would be calling BaseWidget 
.NormalizeValues () because it did not exist. The new modifier handles the
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case in which an upgrade to a base class now collides with a member that 
you previously declared in your class.

Of course, over time, your users might begin wanting to use the BaseWidget 
.NormalizeValues() method. Then you are back to the original problem: 
two methods that look the same but are different. Think through all the 
long-term ramifications of the new modifier. Sometimes, the short-term 
inconvenience of changing your method is still better.

The new modifier must be used with caution. If you apply it indiscrimi-
nately, you create ambiguous method calls in your objects. It’s for the spe-
cial case in which upgrades in your base class cause collisions in your class. 
Even in that situation, think carefully before using it. Most importantly, 
don’t use it in any other situations.

Item 34: Avoid Overloading Methods Defined in Base Classes

When a base class chooses the name of a member, it assigns the semantics 
to that name. Under no circumstances may the derived class use the same 
name for different purposes. And yet, there are many other reasons why a 
derived class may want to use the same name. It may want to implement 
the same semantics in a different way, or with different parameters. Some-
times that’s naturally supported by the language: Class designers declare 
virtual functions so that derived classes can implement semantics differ-
ently. Item 33 covered why using the new modifier could lead to hard-to-
find bugs in your code. In this item, you’ll learn why creating overloads of 
methods that are defined in a base class leads to similar issues. You should 
not overload methods declared in a base class.

The rules for overload resolution in the C# language are necessarily com-
plicated. Possible candidate methods might be declared in the target class, 
any of its base classes, any extension method using the class, and interfaces 
it implements. Add generic methods and generic extension methods, and 
it gets very complicated. Throw in optional parameters, and I’m not sure 
anyone could know exactly what the results will be. Do you really want to 
add more complexity to this situation? Creating overloads for methods 
declared in your base class adds more possibilities to the best overload 
match. That increases the chance of ambiguity. It increases the chance that 
your interpretation of the spec is different than the compilers, and it will 
certainly confuse your users. The solution is simple: Pick a different 
method name. It’s your class, and you certainly have enough brilliance to
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come up with a different name for a method, especially if the alternative 
is confusion for everyone using your types.

The guidance here is straightforward, and yet people always question if it 
really should be so strict. Maybe that’s because overloading sounds very 
much like overriding. Overriding virtual methods is such a core principle 
of object-oriented languages; that’s obviously not what I mean. Over-
loading means creating multiple methods with the same name and differ-
ent parameter lists. Does overloading base class methods really have that 
much of an effect on overload resolution? Let’s look at the different ways 
where overloading methods in the base class can cause issues.

There are a lot of permutations to this problem. Let’s start simple. The 
interplay between overloads in base classes has a lot to do with base and 
derived classes used for parameters. For all the following examples, any 
class that begins with “B” is the base class, and any class that begins with 
“D” is the derived class. The samples use this class hierarchy for parameters:

public class B2 { } 

public class D2 : B2 {}

Here’s a class with one method, using the derived parameter (D2):

public class B 

{

public void Foo(D2 parm) 

{

Console.WriteLine("In B.Foo"); 

}

}

Obviously, this snippet of code writes “In B.Foo”:

var obj1 = new D(); 

obj1.Bar(new D2());

Now, let’s add a new derived class with an overloaded method:

public class D : B 

{

public void Foo(B2 parm) 

{

Console.WriteLine("In D.Foo"); 

}

}
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Now, what happens when you execute this code?

var obj2 = new D(); 

obj2.Foo(new D2()); 

obj2.Foo(new B2());

Both lines print “in D.Foo”. You always call the method in the derived 
class. Any number of developers would figure that the first call would print 
“in B.Foo”. However, even the simple overload rules can be surprising. 
The reason both calls resolve to D.Foo is that when there is a candidate 
method in the most derived compile-time type, that method is the better 
method. That’s still true when there is even a better match in a base class. 
Of course, this is very fragile. What do you suppose this does:

B obj3 = new D(); 

obj3.Foo(new D2());

I chose the words above very carefully because obj3 has the compile-time 
type of B (your Base class), even though the runtime type is D (your Derived 
class). Foo isn’t virtual; therefore, obj3.Foo() must resolve to B.Foo.

If your poor users actually want to get the resolution rules they might 
expect, they need to use casts:

var obj4 = new D();

((B)obj4).Foo(new D2()); 

obj4.Foo(new B2());

If your API forces this kind of construct on your users, you’ve failed. You 
can easily add a bit more confusion. Add one method to your base class, B:

public class B 

{

public void Foo(D2 parm) 

{

Console.WriteLine("In B.Foo"); 

}

public void Bar(B2 parm) 

{

Console.WriteLine("In B.Bar"); 

}

}
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Clearly, the following code prints “In B.Bar”:

var obj1 = new D(); 

obj1.Bar(new D2());

Now, add a different overload, and include an optional parameter:

public class D : B 

{

public void Foo(B2 parm) 

{

Console.WriteLine("In D.Foo"); 

}

public void Bar(B2 parm1, B2 parm2 = null) 

{

Console.WriteLine("In D.Bar"); 

}

}

Hopefully, you’ve already seen what will happen here. This same snippet 
of code now prints “In D.Bar” (you’re calling your derived class again):

var obj1 = new D(); 

obj1.Bar(new D2());

The only way to get at the method in the base class (again) is to provide a 
cast in the calling code.

These examples show the kinds of problems you can get into with one 
parameter method. The issues become more and more confusing as you 
add parameters based on generics. Suppose you add this method:

public class B 

{

public void Foo(D2 parm) 

{

Console.WriteLine("In B.Foo"); 

}

public void Bar(B2 parm) 

{

Console.WriteLine("In B.Bar"); 

}
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public void Foo2(IEnumerable<D2> parm) 

{

Console.WriteLine("In B.Foo2"); 

}

}

Then, provide a different overload in the derived class:

public class D : B 

{

public void Foo(B2 parm) 

{

Console.WriteLine("In D.Foo"); 

}

public void Bar(B2 parm1, B2 parm2 = null) 

{

Console.WriteLine("In D.Bar"); 

} 

public void Foo2(IEnumerable<B2> parm) 

{

Console.WriteLine("In D.Foo2"); 

}

}

Call Foo2 in a manner similar to before:

var sequence = new List<D2> { new D2(), new D2() }; 

var obj2 = new D();

obj2.Foo2(sequence);

What do you suppose gets printed this time? If you’ve been paying atten-
tion, you’d figure that “In D.Foo2” gets printed. That answer gets you partial 
credit. That is what happens in C# 4.0. Starting in C# 4.0, generic interfaces 
support covariance and contravariance, which means D.Foo2 is a candidate 
method for an IEnumerable<D2> when its formal parameter type is an 
IEnumerable<B2>. However, earlier versions of C# do not support generic 
variance. Generic parameters are invariant. In those versions, D.Foo2 is 
not a candidate method when the parameter is an IEnumerable<D2>. The 
only candidate method is B.Foo2, which is the correct answer in those
 versions.
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The code samples above showed that you sometimes need casts to help 
the compiler pick the method you want in many complicated situations. 
In the real world, you’ll undoubtedly run into situations where you need 
to use casts because class hierarchies, implemented interfaces, and exten-
sion methods have conspired to make the method you want, not the 
method the compiler picks as the “best” method. But the fact that real-
world situations are occasionally ugly does not mean you should add to the 
problem by creating more overloads yourself.

Now you can amaze your friends at programmer cocktail parties with a 
more in-depth knowledge of overload resolution in C#. It can be useful 
information to have, and the more you know about your chosen language 
the better you’ll be as a developer. But don’t expect your users to have the 
same level of knowledge. More importantly, don’t rely on everyone having 
that kind of detailed knowledge of how overload resolution works to be 
able to use your API. Instead, don’t overload methods declared in a base 
class. It doesn’t provide any value, and it will only lead to confusion among 
your users.

Item 35: Learn How PLINQ Implements Parallel Algorithms

This is the item where I wish I could say that parallel programming is now 
as simple as adding AsParallel() to all your loops. It’s not, but PLINQ does 
make it much easier than it was to leverage multiple cores in your pro-
grams and still have programs that are correct. It’s by no means trivial to 
create programs that make use of multiple cores, but PLINQ makes it
 easier.

You still have to understand when data access must be synchronized. You 
still need to measure the effects of parallel and sequential versions of the 
methods declared in ParallelEnumerable. Some of the methods involved 
in LINQ queries can execute in parallel very easily. Others force more 
sequential access to the sequence of elements—or, at least, require the 
complete sequence (like Sort). Let’s walk through a few samples using 
PLINQ and learn what works well, and where some of the pitfalls still exist. 
All the samples and discussions for this item use LINQ to Objects. The 
title even calls out “Enumerable,” not “Queryable”. PLINQ really won’t 
help you parallelize LINQ to SQL, or Entity Framework algorithms. That’s 
not really a limiting feature, because those implementations leverage the 
parallel database engines to execute queries in parallel.
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Here’s a simple query using method call syntax that calculates n! for the 
first 150 numbers:

var nums = data.Where(m => m < 150). 

Select(n => Factorial(n));

You can make this a parallel query by simply adding AsParallel() as the 
first method on the query:

var numsParallel = data.AsParallel().

Where(m => m < 150).Select(n => Factorial(n));

Of course, you can do the same kind of work with query syntax. 

var nums = from n in data 

where n < 150 

select Factorial(n);

The Parallel version relies on putting AsParallel() on the data sequence:

var numsParallel = from n in data.AsParallel() 

where n < 150 

select Factorial(n);

The results are the same as with the method call version.

This first sample is very simple yet it does illustrate a few important 
concepts used throughout PLINQ. AsParallel() is the method you call to 
opt in to parallel execution of any query expression. Once you call 
AsParallel(), subsequent operations will occur on multiple cores using 
multiple threads. AsParallel() returns an IParallelEnumerable() rather than 
an IEnumerable(). PLINQ is implemented as a set of extension methods 
on IParallelEnumerable. They have almost exactly the same signatures as 
the methods found in the Enumerable class that extends IEnumerable. 
Simply substitute IParallelEnumerable for IEnumerable in both parame-
ters and return values. The advantage of this choice is that PLINQ follows 
the same patterns that all LINQ providers follow. That makes PLINQ very 
easy to learn. Everything you know about LINQ, in general, will apply to 
PLINQ.

Of course, it’s not quite that simple. This initial query is very easy to use 
with PLINQ. It does not have any shared data. The order of the results 
doesn’t matter. That’s why it is possible to get a speedup that’s in direct 
proportion to the number of cores in the machine upon which this code
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is running. To help you get the best performance out of PLINQ, there are 
several methods that control how the parallel task library functions are 
accessible using IParallelEnumerable.

Every parallel query begins with a partitioning step. PLINQ needs to par-
tition the input elements and distribute those over the number of tasks 
created to perform the query. Partitioning is one of the most important 
aspects of PLINQ, so it is important to understand the different 
approaches, how PLINQ decides which to use, and how each one works. 
First, partitioning can’t take much time. That would cause the PLINQ 
library to spend too much time partitioning, and too little time actually 
processing your data. PLINQ uses four different partitioning algorithms, 
based on the input source and the type of query you are creating. The sim-
plest algorithm is range partitioning. Range partitioning divides the input 
sequence by the number of tasks and gives each task one set of items. For 
example, an input sequence with 1,000 items running on a quad core 
machine would create four ranges of 250 items each. Range partitioning 
is used only when the query source supports indexing the sequence and 
reports how many items are in the sequence. That means range partition-
ing is limited to query sources that are like List<T>, arrays, and other 
sequences that support the IList<T> interface. Range partitioning is usu-
ally used when the source of the query supports those operations.

The second choice for partitioning is chunk partitioning. This algorithm 
gives each task a “chunk” of input items anytime it requests more work. 
The internals of the chunking algorithm will continue to change over time, 
so I won’t cover the current implementation in depth. You can expect that 
the size of chunks will start small, because an input sequence may be small. 
That prevents the situation where one task must process an entire small 
sequence. You can also expect that as work continues, chunks may grow in 
size. That minimizes the threading overhead and helps to maximize 
throughput. Chunks may also change in size depending on the time cost 
for delegates in the query and the number of elements rejected by where
clauses. The goal is to have all tasks finish at close to the same time to max-
imize the overall throughput.

The other two partitioning schemes optimize for certain query operations. 
First is a striped partition. A striped partition is a special case of range par-
titioning that optimizes processing the beginning elements of a sequence. 
Each of the worker threads processes items by skipping N items and then 
processing the next M. After processing M items, the worker thread will
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skip the next N items again. The stripe algorithm is easiest to understand 
if you imagine a stripe of 1 item. In the case of four worker tasks, one task 
gets the items at indices 0, 4, 8, 12, and so on. The second task gets items 
at indices 1, 5, 9, 13, and so on. Striped partitions avoid any interthread 
synchronization to implement TakeWhile() and SkipWhile() for the entire 
query. Also, it lets each worker thread move to the next items it should 
process using simple arithmetic.

The final algorithm is a Hash Partitioning. Hash Partitioning is a special-
purpose algorithm designed for queries with the Join, GroupJoin, GroupBy, 
Distinct, Except, Union, and Intersect operations. Those are more expen-
sive operations, and a specific partitioning algorithm can enable greater 
parallelism on those queries. Hash Partitioning ensures that all items gen-
erating the same hash code are processed by the same task. That minimizes 
the intertask communications for those operations.

Independent of the partitioning algorithm, there are three different algo-
rithms used by PLINQ to parallelize tasks in your code: Pipelining, Stop 
& Go, and Inverted Enumeration. Pipelining is the default, so I’ll explain 
that one first. In pipelining, one thread handles the enumeration (the
foreach, or query sequence). Multiple threads are used to process the 
query on each of the elements in the sequence. As each new item in the 
sequence is requested, it will be processed by a different thread. The num-
ber of threads used by PLINQ in pipelining mode will usually be the
 number of cores (for most CPU bound queries). In my factorial example, 
it would work with two threads on my dual core machine. The first item 
would be retrieved from the sequence and processed by one thread. Imme-
diately the second item would be requested and processed by a second 
thread. Then, when one of those items finished, the third item would be 
requested, and the query expression would be processed by that thread. 
Throughout the execution of the query for the entire sequence, both 
threads would be busy with query items. On a machine with more cores, 
more items would be processed in parallel.

For example, on a 16 core machine, the first 16 items would be processed 
immediately by 16 different threads (presumably running on 16 different 
cores). I’ve simplified a little. There is a thread that handles the enumera-
tion, and that often means Pipelining creates (Number of Cores + 1) 
threads. In most scenarios, the enumeration thread is waiting most of the 
time, so it makes sense to create one extra.
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Stop and Go means that the thread starting the enumeration will join on 
all the threads running the query expression. That method is used when 
you request that immediate execution of a query by using ToList() or 
ToArray(), or anytime PLINQ needs the full result set before continuing 
such as ordering and sorting. Both of the following queries use Stop and Go:

var stopAndGoArray = (from n in data.AsParallel() 

where n < 150 

select Factorial(n)).ToArray();

var stopAndGoList = (from n in data.AsParallel() 

where n < 150 

select Factorial(n)).ToList();

Using Stop and Go processing you’ll often get slightly better performance 
at a cost of a higher memory footprint. However, notice that I’ve still con-
structed the entire query before executing any of the query expressions. 
You’ll still want to compose the entire query, rather than processing each 
portion using Stop and Go and then composing the final results using 
another query. That will often cause the threading overhead to overwhelm 
performance gains. Processing the entire query expression as one com-
posed operation is almost always preferable.

The final algorithm used by the parallel task library is Inverted Enumeration. 
Inverted Enumeration doesn’t produce a result. Instead, it performs some 
action on the result of every query expression. In my earlier samples, I 
printed the results of the Factorial computation to the console:

var numsParallel = from n in data.AsParallel() 

where n < 150 

select Factorial(n);

foreach (var item in numsParallel)

Console.WriteLine(item);

LINQ to Objects (nonparallel) queries are evaluated lazily. That means 
each value is produced only when it is requested. You can opt into the par-
allel execution model (which is a bit different) while processing the result 
of the query. That’s how you ask for the Inverted Enumeration model:

var nums2 = from n in data.AsParallel() 

where n < 150 

select Factorial(n);

nums2.ForAll(item => Console.WriteLine(item));
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Inverted enumeration uses less memory than the Stop and Go method. 
Also, it enables parallel actions on your results. Notice that you still need 
to use AsParallel() in your query in order to use ForAll(). ForAll() has a 
lower memory footprint than the Stop and Go model. In some situations, 
depending on the amount of work being done by the action on the result 
of the query expression, inverted enumeration may often be the fastest 
enumeration method.

All LINQ queries are executed lazily. You create queries, and those queries 
are only executed when you ask for the items produced by the query. LINQ 
to Objects goes a step further. LINQ to Objects executes the query on each 
item as you ask for that item. PLINQ works differently. Its model is closer 
to LINQ to SQL, or the Entity Framework. In those models, when you ask 
for the first item, the entire result sequence is generated. PLINQ is closer 
to that model, but it’s not exactly right. If you misunderstand how PLINQ 
executes queries, then you’ll use more resources than necessary, and you 
can actually make parallel queries run more slowly than LINQ to Objects 
queries on multicore machines.

To demonstrate some of the differences, I’ll walk through a reasonably 
simple query. I’ll show you how adding AsParallel() changes the execution 
model. Both models are valid. The rules for LINQ focus on what the results 
are, not how they are generated. You’ll see that both models will generate 
the exact same results. Differences in how would only manifest themselves 
if your algorithm has side effects in the query clauses.

Here’s the query I used to demonstrate the differences:

var answers = from n in Enumerable.Range(0, 300) 

where n.SomeTest() 

select n.SomeProjection();

I instrumented the SomeTest() and SomeProjection() methods to show 
when each gets called:

public static bool SomeTest(this int inputValue) 

{

Console.WriteLine("testing element: {0}", inputValue); 

return inputValue % 10 == 0;

}

public static string SomeProjection(this int input) 

{
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Console.WriteLine("projecting an element: {0}", input); 

return string.Format("Delivered {0} at {1}",

input.ToString(), 

DateTime.Now.ToLongTimeString());

}

Finally, instead of a simple foreach loop, I iterated the results using the 
IEnumerator<string> members so that you can see when different actions 
take place. This is so that I can more clearly show exactly how the sequence 
is generated (in parallel) and enumerated (in this enumeration loop). In 
production code, I prefer a different implementation.

var iter = answers.GetEnumerator();

Console.WriteLine("About to start iterating"); 

while (iter.MoveNext()) 

{

Console.WriteLine("called MoveNext"); 

Console.WriteLine(iter.Current);

}

Using the standard LINQ to Objects implementation, you’ll see output 
that looks like this:

About to start iterating 

testing element: 0 

projecting an element: 0 

called MoveNext 

Delivered 0 at 1:46:08 PM 

testing element: 1 

testing element: 2 

testing element: 3 

testing element: 4 

testing element: 5 

testing element: 6 

testing element: 7 

testing element: 8 

testing element: 9 

testing element: 10 

projecting an element: 10 

called MoveNext 

Delivered 10 at 1:46:08 PM
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testing element: 11 

testing element: 12 

testing element: 13 

testing element: 14 

testing element: 15 

testing element: 16 

testing element: 17 

testing element: 18 

testing element: 19 

testing element: 20 

projecting an element: 20 

called MoveNext 

Delivered 20 at 1:46:08 PM 

testing element: 21 

testing element: 22 

testing element: 23 

testing element: 24 

testing element: 25 

testing element: 26 

testing element: 27 

testing element: 28 

testing element: 29 

testing element: 30 

projecting an element: 30

The query does not begin to execute until the first call to MoveNext() on 
the enumerator. The first call to MoveNext() executes the query on enough 
elements to retrieve the first element on the result sequence (which hap-
pens to be one element for this query). The next call to MoveNext() 
processes elements in the input sequence until the next item in the output 
sequence has been produced. Using LINQ to Objects, each call to 
MoveNext() executes the query on as many elements are necessary to pro-
duce the next output element.

The rules change once you change the query to be a parallel query:

var answers = from n in ParallelEnumerable.Range(0, 300) 

where n.SomeTest() 

select n.SomeProjection();

The output from this query will look very different. Here’s a sample from 
one run (it will change somewhat for each run):
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About to start iterating 

testing element: 150 

projecting an element: 150 

testing element: 0 

testing element: 151 

projecting an element: 0 

testing element: 1 

testing element: 2 

testing element: 3 

testing element: 4 

testing element: 5 

testing element: 6 

testing element: 7 

testing element: 8 

testing element: 9 

testing element: 10 

projecting an element: 10 

testing element: 11 

testing element: 12 

testing element: 13 

testing element: 14 

testing element: 15 

testing element: 16 

testing element: 17 

testing element: 18 

testing element: 19 

testing element: 152 

testing element: 153 

testing element: 154 

testing element: 155 

testing element: 156 

testing element: 157 

testing element: 20 

... Lots more here elided ... 

testing element: 286 

testing element: 287 

testing element: 288 

testing element: 289 

testing element: 290 

Delivered 130 at 1:50:39 PM
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called MoveNext

Delivered 140 at 1:50:39 PM 

projecting an element: 290 

testing element: 291 

testing element: 292 

testing element: 293 

testing element: 294 

testing element: 295 

testing element: 296 

testing element: 297 

testing element: 298 

testing element: 299 

called MoveNext 

Delivered 150 at 1:50:39 PM 

called MoveNext 

Delivered 160 at 1:50:39 PM 

called MoveNext 

Delivered 170 at 1:50:39 PM 

called MoveNext 

Delivered 180 at 1:50:39 PM 

called MoveNext 

Delivered 190 at 1:50:39 PM 

called MoveNext 

Delivered 200 at 1:50:39 PM 

called MoveNext 

Delivered 210 at 1:50:39 PM 

called MoveNext 

Delivered 220 at 1:50:39 PM 

called MoveNext 

Delivered 230 at 1:50:39 PM 

called MoveNext 

Delivered 240 at 1:50:39 PM 

called MoveNext 

Delivered 250 at 1:50:39 PM 

called MoveNext 

Delivered 260 at 1:50:39 PM 

called MoveNext 

Delivered 270 at 1:50:39 PM 

called MoveNext 

Delivered 280 at 1:50:39 PM
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called MoveNext

Delivered 290 at 1:50:39 PM

Notice how much it changed. The very first call to MoveNext() causes 
PLINQ to start all the threads involved in generating the results. That 
causes quite a few (in this case, almost all) result objects to be produced. 
Each subsequent call to MoveNext() will grab the next item from those 
already produced. You can’t predict when a particular input element will 
be processed. All you know is that the query will begin executing (on sev-
eral threads) as soon as you ask for the first element of the query.

PLINQ’s methods that support query syntax understand how this behav-
ior can affect performance on queries. Suppose you modify the query to 
select the second page of results using Skip() and Take():

var answers = (from n in ParallelEnumerable.Range(0, 300) 

where n.SomeTest() 

select n.SomeProjection()). 

Skip(20).Take(20);

Executing this query produces output that is identical to that produced by 
LINQ to Objects. That’s because PLINQ knows that it will be faster to pro-
duce only 20 elements rather than 300. (I’m simplifying, but PLINQ’s 
implementation of Skip() and Take() do tend to favor a sequential algo-
rithm more than other algorithms.)

You can modify the query a bit more, and get PLINQ to generate all the 
elements using the parallel execution model. Just add an orderby clause:

var answers = (from n in ParallelEnumerable.Range(0, 300) 

where n.SomeTest() 

orderby n.ToString().Length 

select n.SomeProjection()). 

Skip(20).Take(20);

The lambda argument for orderby must not be something that the com-
piler can optimize away (that’s why I used n.ToString().Length rather than 
just n above). Now, the query engine must generate all the elements of the 
output sequence before it can order them properly. Only once the elements 
are ordered properly can the Skip() and Take() methods know which ele-
ments should be returned. Of course, it’s faster on multicore machines to 
use multiple threads to generate all the output than it would be to gener-
ate the sequence sequentially. PLINQ knows that, too, so it starts multiple 
threads to create the output.
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PLINQ tries to create the best implementation for the queries you write in 
order to generate the results you need with the least amount of work, and 
in the least amount of time. Sometimes that means PLINQ queries will 
execute in a different manner than you would expect. Sometimes it will 
act more like LINQ to Objects, where asking for the next item in the out-
put sequence executes the code that produces it. Sometimes it will behave 
more like LINQ to SQL or Entity Framework in that asking for the first 
item will produce all of them. Sometimes it will behave like a mixture of 
the two. You should make sure that you don’t introduce any side effects in 
your LINQ queries. Those will be unreliable in a PLINQ execution model. 
You should construct your queries with some care to ensure that you get 
the most out of the underlying technology. That requires you to under-
stand how they work differently.

Parallel algorithms are limited by Amdahl’s law: The speedup of a pro-
gram using multiple processors is limited by the sequential fraction of the 
program. The extension methods in ParallelEnumerable are no exception 
to this rule. Many of these methods can operate in parallel, but some of 
them will affect the degree of parallelism due to their nature. Obviously 
OrderBy and ThenBy require some coordination between tasks. Skip,
 SkipWhile, Take, and TakeWhile will affect the degree of parallelism. Par-
allel tasks running on different cores may finish in different orders. You 
can use the AsOrdered() and AsUnordered() methods to instruct PLINQ 
as to whether or not order matters in the result sequence.

Sometimes your own algorithm relies on side effects and cannot be paral-
lelized. You can force sequential execution using the ParallelEnumerable 
.AsSequential() extension method to interpret a parallel sequence as an 
IEnumerable and force sequential execution.

Finally, ParallelEnumerable contains methods that allow you to control 
how PLINQ executes parallel queries. You can use WithExecutionMode() 
to suggest parallel execution, even if that means selecting a high overhead 
algorithm. By default, PLINQ will parallelize those constructs where it 
expects parallelism to help. You can use WithDegreeOfParallelism() to sug-
gest the number of threads that may be used in your algorithm. Usually, 
PLINQ will allocate threads based on the number of processors on the 
current machine. You can also use the WithMergeOptions() to request a 
change in how PLINQ controls buffering results during a query. Usually, 
PLINQ will buffer some results from each thread before making them
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available to the consumer thread. You can request no buffering to make 
results available immediately. You can request full buffering, which will 
increase performance at a cost of higher latency. Auto Buffering, the 
default, provides a balance between latency and performance. Buffering is 
a hint, not a demand. PLINQ may ignore your request.

I’m not providing any specific guidance on which of these settings is best 
for you because they will be highly dependent on your algorithm. How-
ever, you have those settings that you can change, and you should experi-
ment on a variety of target machines to see if these will help your 
algorithms. If you don’t have several different target machines to experi-
ment with, I’d recommend using the defaults.

PLINQ makes parallel computing much easier than it previously was. It’s 
an important time for these additions; parallel computing will continue to 
become more important as more and more cores become commonplace 
for desktop and laptop computers. It’s still not easy. And poorly designed 
algorithms may not see performance improvements from parallelization. 
Your task is to look for loops and other tasks that can be parallelized. Take 
those algorithms and try the parallel versions. Measure the results. Work 
on the algorithms to get better results on the performance. Realize that 
some algorithms aren’t easily parallelizable, and keep those serial.

Item 36: Understand How to Use PLINQ for I/O Bound 
Operations

The Parallel Task Library looks like it would be optimized for CPU bound 
operations. While that is a core mission for the library, it does work well 
with I/O bound operations as well. In fact, the design of the Parallel Task 
Library handles I/O bound operations rather well by default. It will update 
the number of threads allocated to your algorithms based on the how busy 
those threads are. More blocked threads (waiting for I/O operations) will 
result in the ThreadPool allocating more threads to the tasks at hand.

As with other parallel extensions, you can use method calls, or LINQ query 
syntax to opt into a parallel execution model. Parallel execution for I/O 
bound operations behaves a little differently than CPU bound operations. 
You’ll often want more threads than cores, because the I/O bound threads 
spend more of their time waiting for some external event. PLINQ provides 
a framework for these idioms as well.
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This snippet of code performs Web downloads from a series of Web sites:

foreach (var url in urls) 

{

var result = new WebClient().DownloadData(url); 

UseResult(result);

}

The DownloadData() call makes a Web synchronous request and waits 
until all the data is retrieved. This algorithm will spend a lot of time wait-
ing. You can quickly change to a parallel model by using a parallel for
loop:

Parallel.ForEach(urls, url => 

{

var result = new WebClient().DownloadData(url); 

UseResult(result);

});

Parallel.ForEach() opts into a parallel processing model. This version takes 
much less time than the serial version. In fact, on my dual core machine, 
the speedup is roughly proportional to the number of elements in the urls 
collection. Threads are spending much of their time waiting, so the Parallel 
Task Library will create more threads.

You can use PLINQ and query syntax to produce the same kind of result:

var results = from url in urls.AsParallel() 

select new WebClient().DownloadData(url);

results.ForAll(result => UseResult(result));

PLINQ operates a bit differently than the Parallel Task Library’s 
Parallel.ForEach() support. PLINQ will use a fixed number of threads, 
whereas AsParallel() will ramp the number of threads up or down to 
increase throughput. You can control the number of threads in PLINQ 
using ParallelEnumerable.WithDegreeOfParallelism() (see Item 35), but 
Parallel.ForEach() will manage it for you. Parallel.ForEach() works best 
when the load is some mixture of I/O bound and CPU bound operation. 
Parallel.ForEach() will manage the number of active threads based on the 
current load. When more threads are blocked waiting on I/O operations, 
it will create more threads to increase throughput. When more threads are 
working, it will allow the number of active threads to go down to minimize 
context switching.
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The code shown above is not truly asynchronous. It’s making use of mul-
tiple threads to perform some work in parallel, but the surrounding pro-
gram will wait for all the Web requests to finish before continuing with 
other work. The Parallel Task Library provides other primitives to imple-
ment the async pattern. One very common pattern is to begin a number 
of I/O bound tasks and perform some action on those results. Ideally, I’d 
like to write something like:

urls.RunAsync( 

url => startDownload(url), 

task => finishDownload(task.AsyncState.ToString(), 

task.Result));

This would use the startDownload() method to begin downloading each 
URL. As each download finishes, finishDownload() would be called. Once 
all the downloads have finished, RunAsync() would finish. There is a rea-
sonable amount of work using the Parallel Task Library to accomplish this, 
so let’s examine it closely. The best place to begin is the RunAsync method 
itself:

public static void RunAsync<T, TResult>( 

this IEnumerable<T> taskParms, 

Func<T, Task<TResult>> taskStarter, 

Action<Task<TResult>> taskFinisher)

{

taskParms.Select(parm => taskStarter(parm)).

AsParallel().

ForAll(t => t.ContinueWith(t2 => taskFinisher(t2)));

}

This method creates a task per input parameter. The Select() method 
returns the sequence of tasks. Next, you need to opt into parallel process-
ing of the results, by using AsParallel(). For every single task, you’ll want 
to call the post processing method for every task. The Task<T> class rep-
resents a (possibly parallel) task and contains properties to report on the 
input and output values from the task. One of the methods of Task<T> is 
ContinueWith(). It will be called as the task finishes and allows you to per-
form any processing after the task has finished running. In the RunAsync 
method, it calls the taskFinisher, giving the Task object as the parameter. 
That enables the caller to perform any processing as the task finishes. 
ForAll() performs the inverted enumeration, so that it blocks until all tasks 
have completed.
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Let’s dig a little deeper into this pattern to examine the methods used for 
starting and reporting the completion of each download. The finish-
Download method is rather simple, and I’ll show it only for completeness:

private static void finishDownload(string url, byte[] bytes) 

{

Console.WriteLine("Read {0} bytes from {1}", 

bytes.Length, url);

}

StartDownload shows a bit more of the interface provided by the Parallel 
Task Library. The specific types used help to support the Task interface. 
I’d like to abstract that away, but handling these types will be a bit differ-
ent for each specific task you want to accomplish. In fact, the Parallel Task 
Library puts a common interface on top of the many different async pat-
terns that existed in the .NET BCL prior to this version.

private static Task<byte[]> startDownload(string url) 

{

var tcs = new TaskCompletionSource<byte[]>(url); 

var wc = new WebClient(); 

wc.DownloadDataCompleted += (sender, e) => 

{

if (e.UserState == tcs) 

{

if (e.Cancelled) 

tcs.TrySetCanceled();

else if (e.Error != null) 

tcs.TrySetException(e.Error);

else 

tcs.TrySetResult(e.Result);

} 

}; 

wc.DownloadDataAsync(new Uri(url), tcs); 

return tcs.Task;

}

This method has a mix of general Task code and code specific to down-
loading data from a URL, so let’s go through it very carefully. First, it creates 
a TaskCompletionSource object for this task. A TaskCompletionSource 
object enables you to separate the creation of a task from its completion.
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It’s important here because you are using the WebClient class’s async 
methods to create the task. The type parameter for the TaskCompletion-
Source is the type of result returned from the task.

The WebClient class uses the Event-based Asynchronous Pattern (EAP). 
That means you register a handler for an event that will be raised when an 
asynchronous operation completes. startDownload() stores the task com-
pletion information in the TaskCompletionSource when that event is 
raised. The TaskSheduler picks up the task and then the download is 
started. The method returns the Task object embedded inside the 
TaskCompletionSource so that the event results can be processed once the 
task completes.

After this bit of work, the Web download occurs asynchronously on another 
thread. When the download completes, the DownloadDataCompleted 
event is raised. The event handler will set the completion status for the 
TaskCompletionSource. That signals the Task embedded in the
 TaskCompletionSource that it has finished.

Now, the task will invoke ContinueWith(), which will report the results 
for that download. It takes a bit of unwinding, but after you’ve unwound 
it once, the pattern isn’t that hard to understand.

The sample shown above is the correct idiom to use when the underlying 
source uses the Event-based Asynchronous Pattern. Other areas of the 
.NET library will use the Asynchronous Programming Model (APM) pat-
tern. In that pattern, for some operation Foo you’ll call BeginFoo(), which 
will return an IAsyncResult. Once the operation has completed, you’ll call 
EndFoo(), passing in the IAsyncResult. You can use the Task<TResult> 
.Factory.FromAsync() method to implement this pattern using the Paral-
lel Task Library. The underlying idiom will be similar to the version I’ve 
shown for downloading Web data. The difference would be where you cre-
ate the task you’d provide a different set of delegates to match the async 
method being used.

The Parallel Task Library provides a series of methods that enable work-
ing with I/O bound operations as well as CPU bound partitions of work. 
Using the Task class, you can support a variety of asynchronous patterns 
that work with I/O bound operations, or those that are a mixture of I/O 
and CPU bound operations. Parallel tasks are still not easy, but the Paral-
lel Task Library and PLINQ provide better language level support for asyn-
chronous programming than previous libraries had. It will continue to be
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more important as more of our programs must access data on different 
machines and more threads are waiting for responses from remote 
machines.

Item 37: Construct Parallel Algorithms with Exceptions in Mind

The previous two items blissfully ignored the possibility of anything going 
wrong with any of the child threads doing its work. That’s clearly not how 
the real world works. Exceptions will occur in your child threads, and 
you’ll be left to pick up the pieces somehow. Of course, exceptions in back-
ground threads increase the complexity in several ways. Exceptions can’t 
just continue up the call stack across thread boundaries. Instead, if an 
Exception reaches the thread start method, that thread gets terminated. 
There’s no way for the calling thread to retrieve the error, or do anything 
about it. Furthermore, if your parallel algorithm must support rollback if 
there are problems, you’ll have to do more work to understand any side 
effects that have occurred and what you should do to recover from those 
errors. Every algorithm has different requirements, so there are no uni-
versal answers for handling exceptions in a parallel environment. The 
guidelines I provide here are just that: guidelines that you can use to deter-
mine the best strategy for your particular application.

Let’s begin with the async download method from the last item. That has 
a very simple strategy in that there are no side effects, and the downloads 
from all other Web hosts can continue without concern for the one down-
load that is failing. Parallel operations use the new AggregateException 
type to handle exceptions in parallel operations. The AggregateException is 
a container that holds all exceptions generated from any of the parallel oper-
ations in an InnerExceptions property. There are a couple different ways 
to handle the exception in this process. First, I’ll show the more general case, 
how to handle any errors generated by subtasks in the outer processing.

The RunAsync() method shown in the previous Item uses more than one 
parallel operation. That means you may have AggregateExceptions in the 
InnerExceptions collection that is part of the AggregateException you 
actually catch. The more parallel operations you have, the deeper this nest-
ing can go. Because of the way parallel operations compose with each 
other, you may end up with multiple copies of the original exception in the 
final collection of exceptions. I modified the call to RunAsync() to process 
possible errors:
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try 

{

urls.RunAsync( 

url => startDownload(url), 

task => finishDownload(

task.AsyncState.ToString(), task.Result));

} 

catch (AggregateException problems) 

{

ReportAggregateError(problems); 

}

private static void ReportAggregateError(

AggregateException aggregate) 

{

foreach (var exception in aggregate.InnerExceptions) 

if (exception is AggregateException)

ReportAggregateError( 

exception as AggregateException);

else

Console.WriteLine(exception.Message);

}

The ReportAggregateError prints out the messages for all exceptions that 
are not themselves AggregateExceptions. Of course, this has the nasty side 
effect of swallowing all exceptions, whether you anticipated them or not. 
That’s rather dangerous. Instead, what you want to do is handle only those 
exceptions from which you can recover, and rethrow any other exceptions.

There are enough recursive collections here that a utility method makes 
sense. The generic method must know which exception types you want to 
handle, and which are not expected and how you’ll handle the ones you are 
handling. You need to send this method a set of exception types, and the 
code to handle the exception. That’s simply a dictionary of types and 
Action<T> lambda expressions. And, if the handler doesn’t process every-
thing in the collection of InnerExceptions, clearly something else went 
wrong. That means it’s time to rethrow the original exception. Here’s the 
updated code that calls RunAsync:

try 

{

urls.RunAsync(
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url => startDownload(url), 

task => finishDownload(task.AsyncState.ToString(), 

task.Result));

} 

catch (AggregateException problems) 

{

var handlers = new Dictionary<Type, Action<Exception>>(); 

handlers.Add(typeof(WebException),

ex => Console.WriteLine(ex.Message));

if (!HandleAggregateError(problems, handlers)) 

throw;

}

The HandleAggregateError method recursively looks at every exception. If the 
exception is expected, the handler is called. Otherwise,  HandleAggregateError 
returns false, indicating that this set of aggregate exceptions cannot be 
processed correctly.

private static bool HandleAggregateError(

AggregateException aggregate, 

Dictionary<Type, Action<Exception>> exceptionHandlers)

{

foreach (var exception in aggregate.InnerExceptions) 

if (exception is AggregateException) 

return HandleAggregateError( 

exception as AggregateException, 

exceptionHandlers);

else if (exceptionHandlers.ContainsKey( 

exception.GetType()))

{

exceptionHandlers[exception.GetType()] 

(exception);

} 

else

return false; 

return true;

}

This code does look a bit dense, but it’s not that hard. When it encounters 
an AggregateException, it evaluates that child list recursively. When it
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encounters any other kind of exception, it looks into the dictionary. If a 
handler Action<> has been registered, it calls that handler. If not, then it 
returns false immediately, having found an exception that it should not be 
handled.

You may be wondering why the original AggregateException gets thrown 
rather than the single exception for which there was no handler. The prob-
lem is that throwing one exception out of the collection could lose impor-
tant information. The InnerExceptions may contain any number of 
exceptions. More than one may be of a type that is not expected. You must 
return the entire collection or risk losing much of that information. In 
many cases, there will be only one exception in the AggregateException’s 
InnerExceptions collection. However, you should not code that way 
because when you do need that extra information, it won’t be there.

Of course, this feels a bit ugly. Wouldn’t it be better to prevent the excep-
tion from leaving the task doing the background work? In almost all cases, 
that is better. That requires changing the code that runs the background 
task to ensure that no exceptions can exit the background task. Whenever 
you use the TaskCompletionSource<> class, that means never calling 
TrySetException(), but rather ensuring that every task somehow calls 
TrySetResult() to indicate completeness. That would mean the following 
changes to startDownload. But, just like I said earlier, you should not be 
catching every single exception. You should catch only those exceptions 
from which you can recover. In this example, you can reasonably recover 
from a WebException, indicating that the remote host isn’t available. Other 
exception types would indicate more serious problems. Those should con-
tinue to generate exceptions and stop all processing. That causes the fol-
lowing changes to the startDownload method:

private static Task<byte[]> startDownload(string url) 

{

var tcs = new TaskCompletionSource<byte[]>(url); 

var wc = new WebClient(); 

wc.DownloadDataCompleted += (sender, e) => 

{

if (e.UserState == tcs) 

{

if (e.Cancelled) 

tcs.TrySetCanceled();

else if (e.Error != null)
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{

if (e.Error is WebException)

tcs.TrySetResult(new byte[0]);

else

tcs.TrySetException(e.Error); 

} 

else

tcs.TrySetResult(e.Result); 

}

}; 

wc.DownloadDataAsync(new Uri(url), tcs); 

return tcs.Task;

}

A WebException causes a return indicating 0 bytes read, and all other 
exceptions are thrown through the normal channels. Yes, this does mean 
that you still need to handle what happens when AggregateExceptions are 
thrown. It’s possible that you merely need to treat those as fatal errors, and 
your background tasks can handle all other errors. But you do need to 
understand that it’s a different kind of exception.

Of course, errors in background tasks create other issues when you use 
LINQ syntax. Remember from Item 35 that I described three different par-
allel algorithms. In all cases, using PLINQ makes some changes to the nor-
mal lazy evaluation, and these changes are important for how you must 
handle exceptions in your PLINQ algorithms. Remember that usually, a 
query executes only as other code requests the items produced by the 
query. That isn’t quite how it works with PLINQ. Background threads gen-
erate results as they run, and another task constructs the final result 
sequence. It’s not exactly an eager evaluation. The query results are not 
produced immediately. However, the background threads that produce the 
results will start as soon as the scheduler allows. Not immediately, but very 
soon. Processing any of those items may throw an exception. Now, that 
means you must change your exception handling code. In a typical LINQ 
query, you can put try/catch blocks around the code that uses the query 
results. It’s not needed around the code that defines the LINQ query 
expression:

var nums = from n in data 

where n < 150 

select Factorial(n);

224 ❘ Chapter 4  Working with the Framework



ptg

try 

{

foreach (var item in nums)

Console.WriteLine(item); 

} 

catch (InvalidOperationException inv) 

{

// elided 

}

Once PLINQ is involved, you must enclose the definition of the query in 
the try/catch block as well. And, of course, remember that once you use 
PLINQ, you must catch AggregateException instead of whatever excep-
tion you had been originally expecting. This is true whether you use 
Pipelining, Stop and Go, or Inverted Enumeration.

Exceptions are complicated in any algorithm. Parallel tasks create more 
complications. The Parallel Task Library uses the AggregateException class 
to hold any and all exceptions thrown somewhere in the depths of your 
parallel algorithms. Once any of the background threads throws an excep-
tion, any other background operations are also stopped. Your best plan is to 
try to ensure that no exceptions can be thrown from the code executing in 
your parallel tasks. Even so, other exceptions that you don’t expect may be 
thrown elsewhere. That means you must handle any AggregateException in 
the controlling thread that initiated all the background work.
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There are advantages to both static typing and dynamic typing. Dynamic 
typing can enable quicker development times and easier interoperability 
with dissimilar systems. Static typing enables the compiler to find classes 
of errors. Because the compiler can make those checks, runtime checks 
can be streamlined, which results in better performance. C# is a statically 
typed language and will remain one. However, for those times when 
dynamic languages provide more efficient solutions, C# now contains 
dynamic features. Those features enable you to switch between static typ-
ing and dynamic typing when the needs arise. The wealth of features that 
you have in static typing means that most of your C# code will be statically 
typed. This chapter shows you the problems suited for dynamic pro-
gramming and the techniques you will use to solve those problems most 
efficiently.

Item 38: Understand the Pros and Cons of Dynamic

C#’s support for dynamic typing is meant to provide a bridge to other 
locations. It’s not meant to encourage general dynamic language pro-
gramming, but rather to provide a smoother transition between the 
strong, static typing associated with C# and those environments that use 
a dynamic typing model.

However, that doesn’t mean you should restrict your use of dynamic to 
interoperating with other environments. C# types can be coerced into 
dynamic objects and treated as dynamic objects. Like everything else in 
this world, there’s good and bad in treating C# objects as dynamic objects. 
Let’s look at one example and go over what happens, both good and bad.

One of the limitations of C# generics is that in order to access methods 
beyond those defined in System.Object, you need to specify constraints. 
Furthermore, constraints must be in the form of a base class, a set of inter-
faces, or the special constraints for reference type, value type, and the exis-
tence of a public parameterless constructor. You can’t specify that some
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known method is available. This can be especially limiting when you want 
to create a general method that relies on some operator, like +. Dynamic 
invocation can fix that. As long as a member is available at runtime, it can 
be used. Here’s a method that adds two dynamic objects, as long as there 
is an available operator + at runtime:

public static dynamic Add(dynamic left, 

dynamic right)

{

return left + right; 

}

This is my first discussion of dynamic, so let’s look into what it’s doing. 
Dynamic can be thought of as “System.Object with runtime binding.” At 
compile time, dynamic variables have only those methods defined in Sys-
tem.Object. However, the compiler adds code so that every member access 
is implemented as a dynamic call site. At runtime, code executes to exam-
ine the object and determine if the requested method is available. (See 
Item 41 on implementing dynamic objects.) This is often referred to as 
“duck typing”: If it walks like a duck and talks like a duck, it may as well 
be a duck. You don’t need to declare a particular interface, or provide any 
compile-time type operations. As long as the members needed are avail-
able at runtime, it will work.

For this method above, the dynamic call site will determine if there is an 
accessible + operator for the actual runtime types of the two objects listed. 
All of these calls will provide a correct answer:

dynamic answer = Add(5, 5); 

answer = Add(5.5, 7.3); 

answer = Add(5, 12.3);

Notice that the answer must be declared as a dynamic object. Because the 
call is dynamic, the compiler can’t know the type of the return value. That 
must be resolved at runtime. The only way to resolve the type of the return 
code at runtime is to make it a dynamic object. The static type of the 
return value is dynamic. Its runtime type is resolved at runtime.

Of course, this dynamic Add method is not limited to numeric type. You 
can add strings (because string does have an operator + defined):

dynamic label = Add("Here is ", "a label");
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You can add a timespan to a date:

dynamic tomorrow = Add(DateTime.Now, TimeSpan.FromDays(1));

As long as there is an accessible operator +, the dynamic version of Add 
will work.

This opening explanation of dynamic might lead you to overuse dynamic 
programming. I’ve only discussed the pros of dynamic programming. It’s 
time to consider the cons as well. You’ve left the safety of the type system 
behind, and with that, you’ve limited how the compiler can help you. Any 
mistakes in interpreting the type will only be discovered at runtime.

The result of any operation where one of the operands (including a pos-
sible this reference) is dynamic is itself dynamic. At some point, you’ll 
want to bring those dynamic objects back into the static type system used 
by most of your C# code. That’s going to require either a cast or a conver-
sion operation:

answer = Add(5, 12.3); 

int value = (int)answer; 

string stringLabel = System.Convert.ToString(answer);

The cast operation will work when the actual type of the dynamic object 
is the target type, or can be cast to the target type. You’ll need to know the 
correct type of the result of any dynamic operation to give it a strong type. 
Otherwise, the conversion will fail at runtime, throwing an exception.

Using dynamic typing is the right tool when you have to resolve methods 
at runtime without knowledge of the types involved. When you do have 
compile-time knowledge, you should use lambda expressions and func-
tional programming constructs to create the solution you need. You could 
rewrite the Add method using lambdas like this:

public static TResult Add<T1, T2, TResult>(T1 left, T2 right,

Func<T1, T2, TResult> AddMethod) 

{

return AddMethod(left, right); 

}

Every caller would be required to supply the specific method. All the pre-
vious examples could be implemented using this strategy:

var lambdaAnswer = Add(5, 5, (a, b) => a + b); 

var lambdaAnswer2 = Add(5.5, 7.3, (a, b) => a + b);
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var lambdaAnswer3 = Add(5, 12.3, (a, b) => a + b); 

var lambdaLabel = Add("Here is ", "a label",

(a, b) => a + b); 

dynamic tomorrow = Add(DateTime.Now, TimeSpan.FromDays(1)); 

var finalLabel = Add("something", 3,

(a,b) => a + b.ToString());

You can see that the last method requires you to specify the conversion 
from int to string. It also has a slightly ugly feel in that all those lambdas 
look like they could be turned into a common method. Unfortunately, 
that’s just how this solution works. You have to supply the lambda at a 
location where the types can be inferred. That means a fair amount of code 
that looks the same to humans must be repeated because the code isn’t 
the same to the compiler. Of course, defining the Add method to imple-
ment Add seems silly. In practice, you’d use this technique for methods 
that used the lambda but weren’t simply executing it. It’s the technique 
used in the .NET library Enumerable.Aggregate(). Aggregate() enumer-
ates an entire sequence and produces a single result by adding (or per-
forming some other operation):

var accumulatedTotal = Enumerable.Aggregate(sequence, 

(a, b) => a + b);

It still feels like you are repeating code. One way to avoid this repeated 
code is to use Expression Trees. It’s another way to build code at runtime. 
The System.Linq.Expression class and its derived classes provide APIs for 
you to build expression trees. Once you’ve built the expression tree, you 
convert it to a lambda expression and compile the resulting lambda expres-
sion into a delegate. For example, this code builds and executes Add on 
three values of the same type:

// Naive Implementation. Read on for a better version 

public static T AddExpression<T>(T left, T right) 

{

ParameterExpression leftOperand = Expression.Parameter( 

typeof(T), "left");

ParameterExpression rightOperand = Expression.Parameter( 

typeof(T), "right");

BinaryExpression body = Expression.Add( 

leftOperand, rightOperand);

Expression<Func<T, T, T>> adder =

Expression.Lambda<Func<T, T, T>>(
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body, leftOperand, rightOperand); 

Func<T, T, T> theDelegate = adder.Compile(); 

return theDelegate(left, right);

}

Most of the interesting work involves type information, so rather than 
using var as I would in production code for clarity, I’ve specifically named 
all the types.

The first two lines create parameter expressions for variables named “left” 
and “right,” both of type T. The next line creates an Add expression using 
those two parameters. The Add expression is derived from BinaryExpres-
sion. You should be able to create similar expressions for other binary 
operators.

Next, you need to build a lambda expression from the expression body 
and the two parameters. Finally, you create the Func<T,T,T> delegate by 
compiling the expression. Once compiled, you can execute it and return 
the result. Of course, you can call it just like any other generic method:

int sum = AddExpression(5, 7);

I added the comment above the last example indicating that this was a 
naïve implementation. DO NOT copy this code into your working appli-
cation. This version has two problems. First, there are a lot of situations 
where it doesn’t work but Add() should work. There are several examples 
of valid Add() methods that take dissimilar parameters: int and double,
DateTime and TimeSpan, etc. Those won’t work with this method. Let’s 
fix that. You must add two more generic parameters to the method. Then, 
you can specify different operands on the left and the right side of the 
operation. While at it, I replaced some of the local variable names with
var declarations. This obscures the type information, but it does help 
make the logic of the method a little more clear.

// A little better. 

public static TResult AddExpression<T1, T2, TResult>

(T1 left, T2 right) 

{

var leftOperand = Expression.Parameter(typeof(T1), 

"left");

var rightOperand = Expression.Parameter(typeof(T2), 

"right");

var body = Expression.Add(leftOperand, rightOperand);
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var adder = Expression.Lambda<Func<T1, T2, TResult>>( 

body, leftOperand, rightOperand);

return adder.Compile()(left, right); 

}

This method looks very similar to the previous version; it just enables you 
to call it with different types for the left and the right operand. The only 
downside is that you need to specify all three parameter types whenever 
you call this version:

int sum2 = AddExpression<int, int, int>(5, 7);

However, because you specify all three parameters, expressions with dis-
similar parameters work:

DateTime nextWeek= AddExpression<DateTime, TimeSpan,

DateTime>(

DateTime.Now, TimeSpan.FromDays(7));

It’s time to address the other nagging issue. The code, as I have shown so 
far, compiles the expression into a delegate every time the AddExpression() 
method is called. That’s quite inefficient, especially if you end up execut-
ing the same expression repeatedly. Compiling the expression is expen-
sive, so you should cache the compiled delegate for future invocations. 
Here’s a first pass at that class:

// dangerous but working version 

public static class BinaryOperator<T1, T2, TResult> 

{

static Func<T1, T2, TResult> compiledExpression;

public static TResult Add(T1 left, T2 right) 

{

if (compiledExpression == null) 

createFunc();

return compiledExpression(left, right); 

}

private static void createFunc() 

{

var leftOperand = Expression.Parameter(typeof(T1), 

"left");

232 ❘ Chapter 5  Dynamic Programming in C#



ptg

var rightOperand = Expression.Parameter(typeof(T2), 

"right");

var body = Expression.Add(leftOperand, rightOperand); 

var adder = Expression.Lambda<Func<T1, T2, TResult>>(

body, leftOperand, rightOperand);

compiledExpression = adder.Compile();

} 

}

At this point, you’re probably wondering which technique to use: dynamic 
or Expressions. That decision depends on the situation. The Expression 
version uses a slightly simpler set of runtime computations. That might 
make it faster in many circumstances. However, expressions are a little less 
dynamic than dynamic invocation. Remember that with dynamic invoca-
tion, you could add many different types successfully: int and double,
short and float, whatever. As long as it was legal in C# code, it was legal 
in the compiled version. You could even add a string and number. If you 
try those same scenarios using the expression version, any of those legal 
dynamic versions will throw an InvalidOperationException. Even though 
there are conversion operations that work, the Expressions you’ve built 
don’t build those conversions into the lambda expression. Dynamic invoca-
tion does more work and therefore supports more different types of oper-
ations. For instance, suppose you want to update the AddExpression to add 
different types and perform the proper conversions. Well, you just have to 
update the code that builds the expression to include the conversions from 
the parameter types to the result type yourself. Here’s what it looks like:

// A fix for one problem causes another 

public static TResult AddExpressionWithConversion

<T1, T2, TResult>(T1 left, T2 right) 

{

var leftOperand = Expression.Parameter(typeof(T1), 

"left");

Expression convertedLeft = leftOperand; 

if (typeof(T1) != typeof(TResult)) 

{

convertedLeft = Expression.Convert(leftOperand, 

typeof(TResult));

} 

var rightOperand = Expression.Parameter(typeof(T2),

"right");
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Expression convertedRight = rightOperand; 

if (typeof(T2) != typeof(TResult)) 

{

convertedRight = Expression.Convert(rightOperand, 

typeof(TResult));

} 

var body = Expression.Add(convertedLeft, convertedRight); 

var adder = Expression.Lambda<Func<T1, T2, TResult>>(

body, leftOperand, rightOperand); 

return adder.Compile()(left, right);

}

That will fix all the problems with any addition that needs a conversion, 
like adding doubles and ints, or adding a double to string with the 
result being a string. However, it breaks valid usages where the parame-
ters should not be the same as the result. In particular, this version would 
not work with the example above adding a TimeSpan to a DateTime. With 
a lot more code, you could solve this. However, at that point, you’ve pretty 
much reimplemented the code that handles dynamic dispatch for C# (see 
Item 41). Instead of all that work, just use dynamic.

You should use the expression version for those times when the operands 
and the result are the same. That gives you generic type parameter inference 
and fewer permutations when the code fails at runtime. Here’s the version 
I would recommend to use Expression for implementing runtime dispatch:

public static class BinaryOperators<T> 

{

static Func<T, T, T> compiledExpression;

public static T Add(T left, T right) 

{

if (compiledExpression == null) 

createFunc();

return compiledExpression(left, right); 

}

private static void createFunc() 

{

var leftOperand = Expression.Parameter(typeof(T), 

"left");
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var rightOperand = Expression.Parameter(typeof(T), 

"right");

var body = Expression.Add(leftOperand, rightOperand); 

var adder = Expression.Lambda<Func<T, T, T>>(

body, leftOperand, rightOperand);

compiledExpression = adder.Compile();

} 

}

You still need to specify the one type parameter when you call Add. Doing 
so does give you the advantage of being able to leverage the compiler to 
create any conversions at the callsite. The compiler can promote ints to
doubles and so on.

There are also performance costs with using dynamic and with building 
expressions at runtime. Just like any dynamic type system, your program 
has more work to do at runtime because the compiler did not perform 
any of its usual type checking. The compiler must generate instructions to 
perform all those checks at runtime. I don’t want to overstate this, because 
the C# compiler does produce efficient code for doing the runtime check-
ing. In most cases, using dynamic will be faster than writing your own 
code to use reflection and produce your own version of late binding. How-
ever, the amount of runtime work is nonzero; the time it takes is also 
nonzero. If you can solve a problem using static typing, it will undoubtedly 
be more efficient than using dynamic types.

When you control all the types involved, and you can create an interface 
instead of using dynamic programming, that’s the better solution. You can 
define the interface, program against the interface, and implement the 
interface in all your types that should exhibit the behavior defined by the 
interface. The C# type system will make it harder to introduce type errors 
in your code, and the compiler will produce more efficient code because 
it can assume that certain classes of errors are not possible.

In many cases, you can create the generic API using lambdas and force 
callers to define the code you would execute in the dynamic algorithm.

The next choice would be using expressions. That’s the right choice if you 
have a relatively small number of permutations for different types, and a 
small number of possible conversions. You can control what expressions 
get created and therefore how much work happens at runtime.
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When you use dynamic, the underlying dynamic infrastructure will work 
to make any possible legal construct work, no matter how expensive the 
work is at runtime.

However, for the Add() method I demonstrated at the beginning of this 
item, that’s not possible. Add() should work on a number of types that are 
already defined in the .NET class library. You can’t go back and add an 
IAdd interface to those types. You also can’t guarantee that all third-party 
libraries you want to work with will conform to some new interface. The 
best way to build methods based on the presence of a particular member 
is to write a dynamic method that defers that choice to the runtime. The 
dynamic implementation will find a proper implementation, use it, and 
cache for better performance. It’s more expensive than a purely statically 
typed solution, and it’s much simpler than parsing expression trees.

Item 39: Use Dynamic to Leverage the Runtime Type of Generic 
Type Parameters

System.Linq.Enumerable.Cast<T> coerces every object in a sequence to 
the target type of T. It’s part of the framework so that LINQ queries can 
be used with sequences of IEnumerable (as opposed to IEnumerable<T>). 
Cast<T> is a generic method, with no constraints on T. That limits the 
types of conversions available to it. If you use Cast<T> without under-
standing its limitations, you’ll find yourself thinking it doesn’t work. In 
reality, it’s working exactly as it should, just not the way you expect. Let’s 
examine its inner workings and limitations. Then, it will be easy to create 
a different version that does what you expect.

The root of the problem lies with the fact that Cast<T> is compiled into 
MSIL without any knowledge of T beyond the fact that T must be a man-
aged type that derives from System.Object. Therefore, it does its work only 
using the functionality defined in System.Object. Examine this class:

public class MyType 

{

public String StringMember { get; set; }

public static implicit operator String(MyType aString) 

{

return aString.StringMember; 

}

236 ❘ Chapter 5  Dynamic Programming in C#



ptg

public static implicit operator MyType(String aString) 

{

return new MyType { StringMember = aString }; 

}

}

See Item 28 for why conversion operators are bad; however, a user-defined 
conversion operator is key to this issue. Consider this code (assume that 
GetSomeStrings() returns a sequence of strings):

var answer1 = GetSomeStrings().Cast<MyType>(); 

try 

{

foreach (var v in answer1)

Console.WriteLine(v); 

} 

catch (InvalidCastException) 

{

Console.WriteLine("Cast Failed!"); 

}

Before starting this item, you may have expected that GetSomeStrings() 
.Cast<MyType>() would correctly convert each string to a MyType using 
the implicit conversion operator defined in MyType. Now you know it 
doesn’t; it throws an InvalidCastException.

The above code is equivalent to this construct, using a query expression:

var answer2 = from MyType v in GetSomeStrings() 

select v;

try 

{

foreach (var v in answer2)

Console.WriteLine(v); 

} 

catch (InvalidCastException) 

{

Console.WriteLine("Cast failed again"); 

}

The type declaration on the range variable is converted to a call to 
Cast<MyType> by the compiler. Again, it throws an InvalidCastException. 
Here’s one way to restructure the code so that it works:
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var answer3 = from v in GetSomeStrings() 

select (MyType)v;

foreach (var v in answer3) 

Console.WriteLine(v);

What’s the difference? The two versions that don’t work use Cast<T>(), 
and the version that works includes the cast in the lambda used as the 
argument to Select(). Cast<T> cannot access any user-defined conversions 
on the runtime type of its argument. The only conversions it can make are 
reference conversions and boxing conversions. A reference conversion suc-
ceeds when the is operator succeeds (see Item 3). A boxing conversion 
converts a value type to a reference type and vice versa (see Item 45). 
Cast<T> cannot access any user-defined conversions because it can only 
assume that T contains the members defined in System.Object.
 System.Object does not contain any user-defined conversions, so those are 
not eligible. The version using Select<T> succeeds because the lambda 
used by Select() takes an input parameter of string. That means the con-
version operation defined on MyType.

As I’ve pointed out before, I usually view conversion operators as a code 
smell. On occasion, they are useful, but often they’ll cause more problems 
than they are worth. Here, without the conversion operators, no developer 
would be tempted to write the example code that didn’t work.

Of course, if I’m recommending not using conversion operators, I should 
offer an alternative. MyType already contains a read/write property to store 
the string property, so you can just remove the conversion operators and 
write either of these constructs:

var answer4 = GetSomeStrings().

Select(n => new MyType { StringMember = n }); 

var answer5 = from v in GetSomeStrings()

select new MyType { StringMember = v };

Also, if you needed to, you could create a different constructor for MyType. 
Of course, that is just working around a limitation in Cast<T>(). Now that 
you understand why those limitations exist, it’s time to write a different 
method that gets around those limitations. The trick is to write the generic 
method in such a way that it leverages runtime information to perform 
any conversions.

You could write pages and pages of reflection-based code to see what con-
versions are available, perform any of those conversions, and return the
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proper type. You could do that, but it’s a waste. Instead, C# 4.0 dynamic 
can do all the heavy lifting. You’re left with a simple Convert<T> that does 
what you expect:

public static IEnumerable<TResult> Convert<TResult>( 

this System.Collections.IEnumerable sequence)

{

foreach (object item in sequence) 

{

dynamic coercion = (dynamic)item; 

yield return (TResult)coercion;

} 

}

Now, as long as there is a conversion (either implicit or explicit) from the 
source type to the target type, the conversion works. There are still casts 
involved, so the possibility for runtime failure exists. That’s just part of 
the game when you are coercing the type system. Convert<T> does work 
in more situations than Cast<T>(), but it also does more work. As devel-
opers, we should be more concerned about what code our users need to 
create than we are about our own code. Convert<T> passes this test:

var convertedSequence = GetSomeStrings().Convert<MyType>();

Cast<T>, like all generic methods, compiles with only limited knowledge 
of its type parameters. That can lead to generic methods not working the 
way you’d expect. The root cause is almost always that the generic method 
could not be made aware of particular functionality in the type repre-
senting the type parameters. When that happens, a little application of 
dynamic can enable runtime reflection to make matters right.

Item 40: Use Dynamic for Parameters That Receive 
Anonymous Types

One of the shortcomings of anonymous types has been that you cannot 
easily write methods using them as parameters or return types. Because the 
compiler generated the anonymous type, you could not use them as 
parameters to methods, or as return values from methods. Any solution to 
the problem was necessarily limiting. You could use anonymous types as 
generic type parameters, or you could use them with any method that used 
System.Object as a parameter. None of those felt particularly satisfying.
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Generic methods could only assume the functionality defined in 
System.Object. System.Object held the same limitations. Of course, at 
some point, you’ll find that you really need a named class with actual 
behavior. This item discusses what to do when you want to work with dif-
ferent anonymous types that may have properties of the same name but 
aren’t part of your core application and don’t warrant the work to create 
a new named type.

The static type of dynamic enables you to overcome this limitation. 
Dynamic enables runtime binding and instructs the compiler to generate 
all the necessary code to work with whatever the runtime type may be.

Suppose you needed to print information for a price list. Further suppose 
that your price list may be generated from multiple data sources. You may 
have one database for items in inventory, another for items that are special 
order, and yet another for items sold through a third-party supplier. 
Because these are completely different systems, they may all have different 
abstractions for the product. Those different abstractions may not have 
the same names for their properties, and they certainly won’t have the same 
base class or implement the same interface. The classic answer is to imple-
ment an adapter pattern (see Design Patterns, Gamma, Helm, Johnson, & 
Vlissides, pp. 139-142) for each of the product abstractions, and convert 
each object to a single type. That’s quite a bit work, and you have more work 
to do every time a new product abstraction is added. However, the adapter 
pattern stays in the static type system and will have better performance.

Another, lighter-weight solution is to use dynamic to create a method that 
works with any type that has the pricing information you seek:

public static void WritePricingInformation(dynamic product) 

{

Console.WriteLine("The price of one {0} is {1}", 

product.Name, product.Price);

}

You can create an anonymous type that matches the properties you chose 
for your pricing method anywhere in your code where you pull informa-
tion from one of your data sources:

var price = from n in Inventory 

where n.Cost > 20 

select new { n.Name, Price = n.Cost * 1.15M };
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You can use any projection you need to create an anonymous type that con-
tains all the necessary properties for your dynamic method. As long as you 
have properties named “Price” and “Name”, the WritePricingInformation 
method will do the job.

Of course, you can use anonymous types that have other properties as well. 
As long as the properties you have include the pricing information, you’re 
fine:

var orderInfo = from n in Ordered 

select new {

n.Name,

Price = n.Cost * 1.15M, 

ShippingCost = n.Cost / 10M

};

Plain old C# objects can be used where dynamic is expected. This means 
your pricing information method can be used with this concrete type that 
happens to use the correct property names:

public class DiscountProduct 

{

public static int NumberInInventory { get; set; }

public double Price { get; set; } 

public string Name { get; set; }

public string ReasonForDiscount { get; set; }

// other methods elided 

}

You may have noticed that the type of the Price property in DiscountProduct 
is double where the type of the Price property in the earlier anonymous 
types was decimal. That’s fine as well. WritePricingInformation uses the 
dynamic static type, so it will figure that out correctly at runtime. Of 
course, if DiscountProduct derived from a base Product class, and the 
Product class contained the Name and Price properties, that would work.

The code written above could easily lead you to believe that I’m advocat-
ing dynamic more often than I really am. Dynamic invocation is a good 
way to solve this problem, but don’t overuse it. Dynamic invocation means
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that you are paying some extra overhead. That overhead is worthwhile 
when it’s needed, but when you can avoid it, you should.

You have to make an either/or choice with dynamic and static invocation. 
You can create overloads of the WritePricingInformation() method that 
are specific to the Product classes in your object model:

public class Product 

{

public decimal Cost { get; set; } 

public string Name { get; set; }

public decimal Price 

{

get { return Cost * 1.15M; } 

}

}

// Derived Product class: 

public class SpecialProduct : Product 

{

public string ReasonOnSpecial { get; set; }

// other methods elided 

}

// elsewhere 

public static void WritePricingInformation(dynamic product) 

{

Console.WriteLine("The price of one {0} is {1}", 

product.Name, product.Price);

}

public static void WritePricingInformation(Product product) 

{

Console.WriteLine("In type safe version"); 

Console.WriteLine("The price of one {0} is {1}",

product.Name, product.Price); 

}
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The compiler will use the specific version for any objects of type Product 
or SpecialProduct (or any other product-derived class in your object model). 
For anything else, the compiler will use the version statically typed as 
dynamic. That includes anonymous types. Internally, the dynamic binder 
will cache method info for each method it uses. That will minimize the over-
head for the likely case that you’ll often be calling WritePricingInformation() 
for the same anonymous type over and over. Once the method binding 
has been performed on the first call, it will be reused on each subsequent 
call. It’s a nonzero cost, but the dynamic implementation does as much 
work as possible to minimize the cost of using dynamic.

You may be wondering why none of these methods are extension methods 
so that they would appear to be members of the anonymous type. Well, 
that would be great, but it’s not legal C#. You are not allowed to create 
extension methods that extend dynamic objects.

You can leverage dynamic to create methods that are intended to be used 
with anonymous types. It’s a technique to be used sparingly, like strong 
spices. If you find yourself creating many methods using dynamic invoca-
tion that are intended for use with anonymous types, that’s a strong indi-
cation that you should create a concrete type to represent that concept. It 
will be much easier to maintain over time, and you’ll have better support 
from the compiler and the type system. However, when you need one or 
two utility methods that use an anonymous type, dynamic invocation is a 
simple way to create that behavior.

Item 41: Use DynamicObject or IDynamicMetaObjectProvider for 
Data-Driven Dynamic Types

One great advantage of dynamic programming is the ability to build types 
whose public interface changes at runtime, based on how you use them. C# 
provides that ability through dynamic, the System.Dynamic.DynamicObject 
base class, and the System.Dynamic.IDynamicMetaObjectProvider inter-
face. Using these tools, you can create your own types that have dynamic 
capabilities.

The simplest way to create a type with dynamic capabilities is to derive from 
System.Dynamic.DynamicObject. That type implements the  IDynamic -
MetaObjectProvider interface using a private nested class. This private 
nested class does the hard work of parsing expressions and forwarding those 
to one of a number of virtual methods in the DynamicObject class. That
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makes it a relatively simple exercise to create a dynamic class, if you can 
derive from DynamicObject.

For example, consider a class that implemented a dynamic property bag. 
When you first create the DynamicPropertyBag, it doesn’t have any items, 
and therefore it doesn’t have any properties. When you try to retrieve any 
property, it will throw an exception. You can add any property to the bag 
by calling the setter on that property. After adding the property, you can 
call the getter and access any of the properties.

dynamic dynamicProperties = new DynamicPropertyBag();

try 

{

Console.WriteLine(dynamicProperties.Marker); 

} 

catch (Microsoft.CSharp.RuntimeBinder.RuntimeBinderException) 

{

Console.WriteLine("There are no properties"); 

}

dynamicProperties.Date = DateTime.Now; 

dynamicProperties.Name = "Bill Wagner"; 

dynamicProperties.Title = "Effective C#"; 

dynamicProperties.Content = "Building a dynamic dictionary";

The implementation of the dynamic property bag requires overriding the 
TrySetMember and TryGetMember methods in the DynamicObject base 
class.

class DynamicPropertyBag : DynamicObject 

{

private Dictionary<string, object> storage = 

new Dictionary<string, object>();

public override bool TryGetMember(GetMemberBinder binder, 

out object result)

{

if (storage.ContainsKey(binder.Name)) 

{

result = storage[binder.Name]; 

return true;

}
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result = null; 

return false;

}

public override bool TrySetMember(SetMemberBinder binder, 

object value)

{

string key = binder.Name; 

if (storage.ContainsKey(key))

storage[key] = value; 

else

storage.Add(key, value); 

return true;

}

public override string ToString() 

{

StringWriter message = new StringWriter(); 

foreach (var item in storage)

message.WriteLine("{0}:\t{1}", item.Key, 

item.Value);

return message.ToString(); 

}

}

The dynamic property bag contains a dictionary that stores the property 
names and their values. The work is done in TryGetMember and
 TrySetMember.

TryGetMember examines the requested name (binder.Name), and if that 
property has been stored in the Dictionary, TryGetMember will return its 
value. If the value has not been stored, the dynamic call fails.

TrySetMember accomplishes its work in a similar fashion. It examines the 
requested name (binder.Name) and either updates or creates an entry for 
that item in the internal Dictionary. Because you can create any property, 
the TrySetMember method always returns true, indicating that the 
dynamic call succeeded.

DynamicObject contains similar methods to handle dynamic invocation 
of indexers, methods, constructors, and unary and binary operators. You 
can override any of those members to create your own dynamic members.
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In all cases, you must examine the Binder object to see what member was 
requested and perform whatever operation is needed. Where there are 
return values, you’ll need to set those (in the specified out parameter) and 
return whether or not your overload handled the member.

If you’re going to create a type that enables dynamic behavior, using 
DynamicObject as the base class is the easiest way to do it. Of course, a 
dynamic property bag is okay, but let’s look at one more sample that shows 
when a dynamic type is more useful.

LINQ to XML made some great improvements to working with XML, but 
it still left something to be desired. Consider this snippet of XML that con-
tains some information about our solar system:

<Planets> 

<Planet>

<Name>Mercury</Name> 

</Planet> 

<Planet>

<Name>Venus</Name> 

</Planet> 

<Planet>

<Name>Earth</Name> 

<Moons>

<Moon>Moon</Moon> 

</Moons>

</Planet> 

<Planet>

<Name>Mars</Name> 

<Moons>

<Moon>Phobos</Moon> 

<Moon>Deimos</Moon>

</Moons> 

</Planet> 

<!-- other data elided -->

</Planets>

To get the first planet, you would write something like this:

// Create an XElement document containing 

// solar system data:
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var xml = createXML();

var firstPlanet = xml.Element("Planet");

That’s not too bad, but the farther you get into the file, the more compli-
cated the code gets. Getting Earth (the third planet) looks like this:

var earth = xml.Elements("Planet").Skip(2).First();

Getting the name of the third planet is more code:

var earthName = xml.Elements("Planet").Skip(2).

First().Element("Name");

Once you’re getting moons, it’s really long code:

var moon = xml.Elements("Planet").Skip(2).First().

Elements("Moons").First().Element("Moon");

Furthermore, the above code only works if the XML contains the nodes 
you’re seeking. If there was a problem in the XML file, and some of the 
nodes were missing, the above code would throw an exception. Adding the 
code to handle missing nodes adds quite a bit more code, just to handle 
potential errors. At that point, it’s harder to discern the original intent.

Instead, suppose you had a data-driven type that could give you dot nota-
tion on XML elements, using the element name. Finding the first planet 
could be as simple as:

// Create an XElement document containing 

// solar system data: 

var xml = createXML();

Console.WriteLine(xml);

dynamic dynamicXML = new DynamicXElement(xml);

// old way: 

var firstPlanet = xml.Element("Planet"); 

Console.WriteLine(firstPlanet); 

// new way: 

// returns the first planet. 

dynamic test2 = dynamicXML.Planet; 
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Getting the third planet would be simply using an indexer:

// gets the third planet (Earth) 

dynamic test3 = dynamicXML["Planet", 2];

Reaching the moons becomes two chained indexers:

dynamic earthMoon = dynamicXML["Planet", 2]["Moons", 0].Moon;

Finally, because it’s dynamic, you can define the semantics so any missing 
node returns an empty element. That means all of these would return 
empty dynamic XElement nodes:

dynamic test6 = dynamicXML["Planet", 2] 

["Moons", 3].Moon; // earth doesn't have 4 moons

dynamic fail = dynamicXML.NotAppearingInThisFile; 

dynamic fail2 = dynamicXML.Not.Appearing.In.This.File;

Because missing elements will return a missing dynamic element, you can 
continue to dereference it and know that if any element in the composed 
XML navigation is missing, the final result will be a missing element. 
Building this is another class derived from DynamicObject. You have to 
override TryGetMember, and TryGetIndex to return dynamic elements 
with the appropriate nodes.

public class DynamicXElement : DynamicObject 

{

private readonly XElement xmlSource;

public DynamicXElement(XElement source) 

{

xmlSource = source; 

}

public override bool TryGetMember(GetMemberBinder binder, 

out object result)

{

result = new DynamicXElement(null); 

if (binder.Name == "Value") 

{

result = (xmlSource != null) ? 

xmlSource.Value : "";

return true; 

}
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if (xmlSource != null) 

result = new DynamicXElement(

xmlSource.Element(XName.Get(binder.Name))); 

return true;

}

public override bool TryGetIndex(GetIndexBinder binder, 

object[] indexes, out object result)

{

result = null; 

// This only supports [string, int] indexers 

if (indexes.Length != 2)

return false; 

if (!(indexes[0] is string))

return false; 

if (!(indexes[1] is int))

return false;

var allNodes = xmlSource.Elements(indexes[0].

ToString()); 

int index = (int)indexes[1]; 

if (index < allNodes.Count())

result = new DynamicXElement(allNodes.ElementAt( 

index));

else 

result = new DynamicXElement(null);

return true; 

}

public override string ToString() 

{

if (xmlSource != null) 

return xmlSource.ToString();

else 

return string.Empty;

} 

}

Most of the code uses similar concepts to the code you have seen earlier in 
this item. The TryGetIndex method is new. It must implement the dynamic 
behavior when client code invokes an indexer to retrieve an XElement.
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Using DynamicObject makes it much easier to implement a type that 
behaves dynamically. DynamicObject hides much of the complexity of cre-
ating dynamic types. It has quite a bit of implementation to handle dynamic 
dispatch for you. Also, sometimes you will want to create a dynamic type 
and you won’t be able to use DynamicObject because you need a different 
base class. For that reason, I’m going to show you how to create the 
dynamic dictionary by implementing IDynamicMetaObjectProvider your-
self, instead of relying on DynamicObject to do the heavy lifting for you.

Implementing IDynamicMetaObjectProvider means implementing one 
method: GetMetaObject. Here’s a second version of DynamicDictionary 
that implements IDynamicMetaObjectProvider, instead of deriving from 
DynamicObject:

class DynamicDictionary2 : IDynamicMetaObjectProvider 

{

#region IDynamicMetaObjectProvider Members 

DynamicMetaObject IDynamicMetaObjectProvider.

GetMetaObject(

System.Linq.Expressions.Expression parameter)

{

return new DynamicDictionaryMetaObject(parameter, 

this);

} 

#endregion

private Dictionary<string, object> storage = new 

Dictionary<string, object>();

public object SetDictionaryEntry(string key, 

object value)

{

if (storage.ContainsKey(key)) 

storage[key] = value;

else 

storage.Add(key, value);

return value; 

}

public object GetDictionaryEntry(string key) 

{
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object result = null; 

if (storage.ContainsKey(key)) 

{

result = storage[key]; 

} 

return result;

}

public override string ToString() 

{

StringWriter message = new StringWriter(); 

foreach (var item in storage)

message.WriteLine("{0}:\t{1}", item.Key, 

item.Value);

return message.ToString(); 

}

}

GetMetaObject() returns a new DynamicDictionaryMetaObject whenever 
it is called. Here’s where the first complexity enters the picture.  GetMeta -
Object() is called every time any member of the DynamicDictionary is 
invoked. If you call the same member ten times, GetMetaObject() gets called 
ten times. Even if methods are statically defined in DynamicDictionary2, 
GetMetaObject() will be called and can intercept those methods to invoke 
possible dynamic behavior. Remember that dynamic objects are statically 
typed as dynamic, and therefore have no compile-time behavior defined. 
Every member access is dynamically dispatched.

The DynamicMetaObject is responsible for building an Expression Tree 
that executes whatever code is necessary to handle the dynamic invocation. 
Its constructor takes the expression and the dynamic object as parameters. 
After being constructed, one of the Bind methods will be called. Its respon-
sibility is to construct a DynamicMetaObject that contains the expression 
to execute the dynamic invocation. Let’s walk through the two Bind meth-
ods necessary to implement the DynamicDictionary: BindSetMember and 
BindGetMember.

BindSetMember constructs an expression tree that will call Dynamic-
Dictionary2.SetDictionaryEntry() to set a value in the dictionary. Here’s 
its implementation:
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public override DynamicMetaObject BindSetMember( 

SetMemberBinder binder,

DynamicMetaObject value)

{

// Method to call in the containing class: 

string methodName = "SetDictionaryEntry";

// setup the binding restrictions. 

BindingRestrictions restrictions = 

BindingRestrictions.GetTypeRestriction(Expression, 

LimitType);

// setup the parameters:

Expression[] args = new Expression[2]; 

// First parameter is the name of the property to Set 

args[0] = Expression.Constant(binder.Name); 

// Second parameter is the value 

args[1] = Expression.Convert(value.Expression,

typeof(object));

// Setup the 'this' reference

Expression self = Expression.Convert(Expression, 

LimitType);

// Setup the method call expression 

Expression methodCall = Expression.Call(self,

typeof(DynamicDictionary2).GetMethod(methodName), 

args);

// Create a meta object to invoke Set later: 

DynamicMetaObject setDictionaryEntry = new

DynamicMetaObject( 

methodCall, 

restrictions);

// return that dynamic object 

return setDictionaryEntry;

}

Metaprogramming quickly gets confusing, so let’s walk through this slowly. 
The first line sets the name of the method called in the DynamicDictionary,
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“SetDictionaryEntry”. Notice that SetDictionary returns the right-hand 
side of the property assignment. That’s important because this construct 
must work:

DateTime current = propertyBag2.Date = DateTime.Now;

Without setting the return value correctly, that construct won’t work.

Next, this method initializes a set of BindingRestrictions. Most of the time, 
you’ll use restrictions like this one, restrictions given in the source expres-
sion and for the type used as the target of the dynamic invocation.

The rest of the method constructs the method call expression that will 
invoke SetDictionaryEntry() with the property name and the value used. 
The property name is a constant expression, but the value is a Conversion 
expression that will be evaluated lazily. Remember that the right-hand side 
of the setter may be a method call or expression with side effects. Those 
must be evaluated at the proper time. Otherwise, setting properties using 
the return value of methods won’t work:

propertyBag2.MagicNumber = GetMagicNumber();

Of course, to implement the dictionary, you have to implement BindGet-
Member as well. BindGetMember works almost exactly the same way. It 
constructs an expression to retrieve the value of a property from the
 dictionary.

public override DynamicMetaObject BindGetMember(

GetMemberBinder binder) 

{

// Method call in the containing class: 

string methodName = "GetDictionaryEntry";

// One parameter

Expression[] parameters = new Expression[] 

{

Expression.Constant(binder.Name) 

};

DynamicMetaObject getDictionaryEntry = new

DynamicMetaObject(

Expression.Call(

Expression.Convert(Expression, LimitType), 
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typeof(DynamicDictionary2).GetMethod(methodName), 

parameters),

BindingRestrictions.GetTypeRestriction(Expression,

LimitType)); 

return getDictionaryEntry;

}

Before you go off and think this isn’t that hard, let me leave you with some 
thoughts from the experience of writing this code. This is about as simple 
as a dynamic object can get. You have two APIs: property get, property
set. The semantics are very easy to implement. Even with this very sim-
ple behavior, it was rather difficult to get right. Expression trees are hard 
to debug. They are hard to get right. More sophisticated dynamic types 
would have much more code. That would mean much more difficulty get-
ting the expressions correct.

Furthermore, keep in mind one of the opening remarks I made on this 
section: Every invocation on your dynamic object will create a new 
DynamicMetaObject and invoke one of the Bind members. You’ll need to 
write these methods with an eye toward efficiency and performance. They 
will be called a lot, and they have much work to do.

Implementing dynamic behavior can be a great way to approach some of 
your programming challenges. When you look at creating dynamic types, 
your first choice should be to derive from System.Dynamic.DynamicObject. 
On those occasions where you must use a different base class, you can 
implement IDynamicMetaObjectProvider yourself, but remember that 
this is a complicated problem to take on. Furthermore, any dynamic types 
involve some performance costs, and implementing them yourself may 
make those costs greater.

Item 42: Understand How to Make Use of the Expression API

.NET has had APIs that enable you to reflect on types or to create code at 
runtime. The ability to examine code or create code at runtime is very 
powerful. There are many different problems that are best solved by 
inspecting code or dynamically generating code. The problem with these 
APIs is that they are very low level and quite difficult to work with. As 
developers, we crave an easier way to dynamically solve problems.

Now that C# has added LINQ and dynamic support, you have a better way 
than the classic Reflection APIs: expressions and expression trees. Expres-
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sions look like code. And, in many uses, expressions do compile down to 
delegates. However, you can ask for expressions in an Expression format. 
When you do that, you have an object that represents the code you want 
to execute. You can examine that expression, much like you can examine 
a class using the Reflection APIs. In the other direction, you can build an 
expression to create code at runtime. Once you create the expression tree 
you can compile and execute the expression. The possibilities are endless. 
After all, you are creating code at runtime. I’ll describe two common tasks 
where expressions can make your life much easier.

The first solves a common problem in communication frameworks. The 
typical workflow for using WCF, remoting, or Web services is to use some 
code generation tool to generate a client-side proxy for a particular serv-
ice. It works, but it is a somewhat heavyweight solution. You’ll generate 
hundreds of lines of code. You’ll need to update the proxy whenever the 
server gets a new method, or changes parameter lists. Instead, suppose you 
could write something like this:

var client = new ClientProxy<IService>(); 

var result = client.CallInterface<string>(

srver => srver.DoWork(172));

Here, the ClientProxy<T> knows how to put each argument and method 
call on the wire. However, it doesn’t know anything about the service 
you’re actually accessing. Rather than relying on some out of band code 
generator, it will use expression trees and generics to figure out what 
method you called, and what parameters you used.

The CallInterface() method takes one parameter, which is an Expression 
<Func<T, TResult>>. The input parameter (of type T) represents an 
object that implements IService. TResult, of course, is whatever the par-
ticular method returns. The parameter is an expression, and you don’t 
even need an instance of an object that implements IService to write this 
code. The core algorithm is in the CallInterface() method.

public TResult CallInterface<TResult>(Expression<

Func<T, TResult>> op) 

{

var exp = op.Body as MethodCallExpression; 

var methodName = exp.Method.Name; 

var methodInfo = exp.Method;
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var allParameters = from element in exp.Arguments 

select processArgument(element);

Console.WriteLine("Calling {0}", methodName);

foreach (var parm in allParameters) 

Console.WriteLine(

"\tParameter type = {0}, Value = {1}", 

parm.Item1, parm.Item2);

return default(TResult); 

}

private Tuple<Type, object> processArgument(Expression 

element)

{

object argument = default(object); 

LambdaExpression l = Expression.Lambda(

Expression.Convert(element, element.Type)); 

Type parmType = l.ReturnType; 

argument = l.Compile().DynamicInvoke(); 

return Tuple.Create(parmType, argument);

}

Starting from the beginning of CallInterface, the first thing this code does 
is look at the body of the expression tree. That’s the part on the right side 
of the lambda operator. Look back at the example where I used 
CallInterface(). That example called it with srver.DoWork(172). It is a 
MethodCallExpression, and that MethodCallExpression contains all the 
information you need to understand all the parameters and the method 
name invoked. The method name is pretty simple: It’s stored in the Name 
property of the Method property. In this example, that would be 
‘DoWork’. The LINQ query processes any and all parameters to this 
method. The interesting work in is processArgument.

processArgument evaluates each parameter expression. In the example 
above, there is only one argument, and it happens to be a constant, the 
value 172. However, that’s not very robust, so this code takes a different 
strategy. It’s not robust, because any of the parameters could be method 
calls, property or indexer accessors, or even field accessors. Any of the 
method calls could also contain parameters of any of those types. Instead of 
trying to parse everything, this method does that hard work by leveraging
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the LambdaExpression type and evaluating each parameter expression. 
Every parameter expression, even the ConstantExpression, could be expressed 
as the return value from a lambda expression. ProcessArgument() con-
verts the parameter to a LambdaExpression. In the case of the constant 
expression, it would convert to a lambda that is the equivalent of () => 
172. This method converts each parameter to a lambda expression because 
a lambda expression can be compiled into a delegate and that delegate can 
be invoked. In the case of the parameter expression, it creates a delegate 
that returns the constant value 172. More complicated expressions would 
create more complicated lambda expressions.

Once the lambda expression has been created, you can retrieve the type of 
the parameter from the lambda. Notice that this method does not perform 
any processing on the parameters. The code to evaluate the parameters in 
the lambda expression would be executed when the lambda expression is 
invoked. The beauty of this is that it could even contain other calls to
 CallInterface(). Constructs like this just work:

client.CallInterface(srver => srver.DoWork( 

client.CallInterface(srv => srv.GetANumber())));

This technique shows you how you can use expression trees to determine 
at runtime what code the user wishes to execute. It’s hard to show in a 
book, but because ClientProxy<T> is a generic class that uses the service 
interface as a type parameter, the CallInterface method is strongly typed. 
The method call in the lambda expression must be a member method 
defined on the server.

The first example showed you how to parse expressions to convert code (or 
at least expressions that define code) into data elements you can use to 
implement runtime algorithms. The second example shows the opposite 
direction: Sometimes you want to generate code at runtime. One com-
mon problem in large systems is to create an object of some destination 
type from some related source type. For example, your large enterprise 
may contain systems from different vendors each of which has a different 
type defined for a contact (among other types). Sure, you could type meth-
ods by hand, but that’s tedious. It would be much better to create some 
kind of type that “figures out” the obvious implementation. You’d like to 
just write this code:

var converter = new Converter<SourceContact,

DestinationContact>();

DestinationContact dest2 = converter.ConvertFrom(source);
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You’d expect the converter to copy every property from the source to the 
destination where the properties have the same name and the source object 
has a public get accessor and the destination type has a public set acces-
sor. This kind of runtime code generation can be best handled by creating 
an expression, and then compiling and executing it. You want to generate 
code that does something like this:

// Not legal C#, explanation only 

TDest ConvertFromImaginary(TSource source) 

{

TDest destination = new TDest(); 

foreach (var prop in sharedProperties)

destination.prop = source.prop; 

return destination;

}

You need to create an expression that creates code that executes the pseudo 
code written above. Here’s the full method to create that expression and 
compile it to a function. Immediately following the listing, I’ll explain all 
the parts of this method in detail. You’ll see that while it’s a bit thorny at 
first, it’s nothing you can’t handle.

private void createConverterIfNeeded() 

{

if (converter == null) 

{

var source = Expression.Parameter(typeof(TSource), 

"source");

var dest = Expression.Variable(typeof(TDest), 

"dest");

var assignments = from srcProp in 

typeof(TSource).GetProperties(

BindingFlags.Public | 

BindingFlags.Instance)

where srcProp.CanRead 

let destProp = typeof(TDest).

GetProperty( 

srcProp.Name, 

BindingFlags.Public | 

BindingFlags.Instance)
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where (destProp != null) && 

(destProp.CanWrite)

select Expression.Assign( 

Expression.Property(dest, 

destProp),

Expression.Property(source, 

srcProp));

// put together the body: 

var body = new List<Expression>(); 

body.Add(Expression.Assign(dest,

Expression.New(typeof(TDest)))); 

body.AddRange(assignments); 

body.Add(dest);

var expr = 

Expression.Lambda<Func<TSource, TDest>>(

Expression.Block( 

new[] { dest }, // expression parameters 

body.ToArray() // body 

), 

source // lambda expression

);

var func = expr.Compile(); 

converter = func;

} 

}

This method creates code that mimics the pseudo code shown before. First, 
you declare the parameter:

var source = Expression.Parameter(typeof(TSource), "source");

Then, you have to declare a local variable to hold the destination:

var dest = Expression.Variable(typeof(TDest), "dest");

The bulk of the method is the code that assigns properties from the source 
object to the destination object. I wrote this code as a LINQ query. The 
source sequence of the LINQ query is the set of all public instance prop-
erties in the source object where there is a get accessor:
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from srcProp in typeof(TSource).GetProperties( 

BindingFlags.Public | BindingFlags.Instance) 

where srcProp.CanRead

The let declares a local variable that holds the property of the same name 
in the destination type. It may be null, if the destination type does not 
have a property of the correct type:

let destProp = typeof(TDest).GetProperty( 

srcProp.Name, 

BindingFlags.Public | BindingFlags.Instance) 

where (destProp != null) && 

(destProp.CanWrite)

The projection of the query is a sequence of assignment statements that 
assigns the property of the destination object to the value of the same 
property name in the source object:

select Expression.Assign(

Expression.Property(dest, destProp), 

Expression.Property(source, srcProp));

The rest of the method builds the body of the lambda expression. The 
Block() method of the Expression class needs all the statements in an array 
of Expression. The next step is to create a List<Expression> where you can 
add all the statements. The list can be easily converted to an array.

var body = new List<Expression>(); 

body.Add(Expression.Assign(dest,

Expression.New(typeof(TDest)))); 

body.AddRange(assignments); 

body.Add(dest);

Finally, it’s time to build a lambda that returns the destination object and 
contains all the statements built so far:

var expr =

Expression.Lambda<Func<TSource, TDest>>(

Expression.Block( 

new[] { dest }, // expression parameters 

body.ToArray() // body 

), 

source // lambda expression

);
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That’s all the code you need. Time to compile it and turn it into a delegate 
that you can call:

var func = expr.Compile(); 

converter = func;

That is complicated, and it’s not the easiest to write. You’ll often find 
compiler-like errors at runtime until you get the expressions built cor-
rectly. It’s also clearly not the best way to approach simple problems. But 
even so, the Expression APIs are much simpler than their predecessors in 
the Reflection APIs. That’s when you should use the Expression APIs: 
When you think you want to use reflection, try to solve the problem using 
the Expression APIs instead.

The Expression APIs can be used in two very different ways: You can cre-
ate methods that take expressions as parameters, which enables you to 
parse those expressions and create code based on the concepts behind the 
expressions that were called. Also, the Expression APIs enable you to cre-
ate code at runtime. You can create classes that write code, and then exe-
cute the code they’ve written. It’s a very powerful way to solve some of the 
more difficult general purpose problems you’ll encounter.

Item 43: Use Expressions to Transform Late Binding into 
Early Binding

Late binding APIs use the symbol text to do their work. Compiled APIs 
do not need that information, because the compiler has already resolved 
symbol references. The Expression API enables you to bridge both worlds. 
Expression objects contain a form of abstract symbol tree that represents 
the algorithms you want to execute. You can use the Expression API to exe-
cute that code. You can also examine all the symbols, including the names 
of variables, methods, and properties. You can use the Expression APIs to 
create strongly typed compiled methods that interact with portions of the 
system that rely on late binding, and use the names of properties or other 
symbols.

One of the most common examples of a late binding API is the property 
notification interfaces used by Silverlight and WPF. Both Silverlight and 
WPF were designed to respond to bound properties changing so that user 
interface elements can respond when data elements change underneath 
the user interface. Of course, there is no magic; there is only code that you
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have to implement. In this case, you have to implement two interfaces: 
INotifyPropertyChanged and INotifyPropertyChanging. These are both 
very simple interfaces; each supports one event. The event argument 
for both of these events simply contains the name of the property that’s 
being updated. You can use the Expression API to create extensions that 
remove the dependency on the property name. The extensions will use the 
Expression API to parse the name of the property and will execute the 
expression algorithm to change the property value.

The late binding implementation for these properties is very simple. Your 
data classes need to declare support for both interfaces. Every property 
that can be changed needs some extra code to raise those events. Here’s a 
class that displays the amount of memory used by the current program. 
It automatically updates itself every 3 seconds. By supporting the 
INotifyPropertyChanged and INotifyPropertyChanging interfaces, an 
object of this type can be added to your window class, and you can see 
your runtime memory usage.

public class MemoryMonitor : INotifyPropertyChanged,

INotifyPropertyChanging 

{

System.Threading.Timer updater;

public MemoryMonitor() 

{

updater = new System.Threading.Timer((_) => 

timerCallback(_), 

null, 0, 5000);

}

private void timerCallback(object unused) 

{

UsedMemory = GC.GetTotalMemory(false); 

}

public long UsedMemory 

{

get { return mem; } 

private set 

{
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if (value != mem) 

{

if (PropertyChanging != null) 

PropertyChanging(this, 

new PropertyChangingEventArgs( 

"UsedMemory"));

mem = value; 

if (PropertyChanged != null)

PropertyChanged(this, 

new PropertyChangedEventArgs( 

"UsedMemory"));

} 

}

} 

private long mem;

#region INotifyPropertyChanged Members 

public event PropertyChangedEventHandler

PropertyChanged; 

#endregion

#region INotifyPropertyChanging Members 

public event PropertyChangingEventHandler

PropertyChanging; 

#endregion

}

That’s all there is to it. But, every time you create an implementation of 
either of these interfaces, you’ll ask yourself if there is an easier way to do 
this. Every property setter needs to raise an event. There really isn’t a good 
way around that. But, you can see that every setter needs to raise two 
events: one before it changes the property and one after. What’s worse is 
that the argument to the event parameters uses a string to represent the 
property name. That’s very brittle. Any refactoring is going to break this 
code. Any typing mistakes create broken code. So let’s make this easier, 
and let’s fix this.

The obvious choice is going to be implementing something in an extension 
method. You’re going to want to add these methods with any class that 
implements INotifyPropertyChanged and INotifyPropertyChanging.
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Like many things, making this easy is hard. But the hard code only gets 
written once, so it is worth the work. The work to be done is boilerplate:

1. See if the new value and the old value are different.
2. Raise the INotifyPropertyChanging event.
3. Change the value.
4. Raise the INotifyPropertyChanged event.

The hard part is determining what string to use for the name of the prop-
erty. Remember that the point of this exercise is to make the code durable 
enough so that strings aren’t necessary to make the code work properly. I 
wanted to make an API that is as simple as possible for users but allows the 
code underlying that simple API to execute whatever magic was necessary 
to do all the work.

My original goal was to make the extension methods extend either
 INotifyPropertyChanged or INotifyPropertyChanging, but that made the 
API worse, primarily because it made raising the events harder. Instead, 
the method actually extends the PropertyChanged event that is a member 
of INotifyPropertyChanged. Here’s how you would use it in the
 MemoryMonitor:

// MemoryMonitor, using the extension methods 

private void timerCallback(object unused) 

{

long updatedValue = GC.GetTotalMemory(false); 

PropertyChanged.SetNotifyProperty(updatedValue,

() => UsedMemory); 

}

public long UsedMemory 

{

get; 

private set;

}

This serves the goal of making the implementation of the MemoryMonitor 
much easier. No magic strings. The UsedMemory is now an automatic 
property. There are no magic strings inside the code. The code to imple-
ment this is a complicated bit that uses reflection and expression trees, so 
let’s walk through it carefully. Here’s the full extension method:
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public static class PropertyNotifyExtensions 

{

public static T SetNotifyProperty<T>(this 

PropertyChangedEventHandler handler, 

T newValue, Expression<Func<T>> oldValueExpression, 

Action<T> setter) 

{

return SetNotifyProperty(handler, null, newValue, 

oldValueExpression, setter);

}

public static T SetNotifyProperty<T>(this 

PropertyChangedEventHandler postHandler, 

PropertyChangingEventHandler preHandler, 

T newValue, Expression<Func<T>> oldValueExpression, 

Action<T> setter)

{ 

Func<T> getter = oldValueExpression.Compile(); 

T oldValue = getter(); 

if (!oldValue.Equals(newValue)) 

{

var body = oldValueExpression.Body as

System.Linq.Expressions.MemberExpression; 

var propInfo = body.Member as PropertyInfo; 

string propName = body.Member.Name;

// Get the target object 

var targetExpression = body.Expression as

ConstantExpression; 

object target = targetExpression.Value;

if (preHandler != null) 

preHandler(target, new 

PropertyChangingEventArgs(propName));

// Use Reflection to do the set: 

// propInfo.SetValue(target, newValue, null); 

//var compiledSetter = setter.Compile(); 

setter(newValue);
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if (postHandler != null) 

postHandler(target, new 

PropertyChangedEventArgs(propName));

} 

return newValue;

} 

}

Before I go through all the code, let me begin with a simple disclaimer. I 
removed some of the error handling for space. In production code, you’d 
need to check that the casts worked, and that the property setter was found. 
You’d also need to handle possible security exceptions in a Silverlight
 sandbox.

The first course of action is to compile and execute the property get
expression and compare that value to the new value. There’s no reason to 
do any work if the old and new values are the same. Just compile the 
expression and execute it.

The next part is more complicated. This code parses the expression to find 
the important components needed to set the value and to raise the 
INotifyPropertyChanging and INotifyPropertyChanged events. That 
means finding the name of the property, the type of the target object, and 
accessing the property setter. Remember how this method was called. 
Here’s the expression that maps to the oldValueExpression:

() => UsedMemory

That’s a member access expression. The member expression contains the 
Member property, which is the PropertyInfo for the property being 
changed. One of its members is the Name of the property, which is where 
you get the string “UsedMemory”, which you’ll need to raise the event. 
The PropertyInfo object has another use for you: You’ll use Reflection APIs 
on the PropertyInfo object to change the value of the property.

The technique here can be applied to other problems as well where the 
framework requires string information on methods or properties. In fact, 
LINQ to SQL and the Entity Framework are built on the System.Linq 
.Expression APIs. Those APIs allow you to treat code as data. You can exam-
ine the code using the Expression APIs. You can change algorithms, create 
new code, and execute the code. It’s a great way to build dynamic systems.

DataBinding, by its very nature, requires that you work with the string 
representation of your properties. INotifyPropertyChanged, and  INotify -
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PropertyChanging are no exception. But, it’s an important enough fea-
ture that you should prefer supporting those interfaces in any class that 
might be the object of data binding in your applications. It is common 
enough that it’s worth the extra work to create a general solution.

Item 44: Minimize Dynamic Objects in Public APIs

Dynamic objects just don’t behave that well in a statically typed system. 
The type system sees them as though they were instances of System.Object. 
But they are special instances. You can ask them to do work above and 
beyond what’s defined in System.Object. The compiler generates code that 
tries to find and execute whatever members you try to access.

But dynamic objects are pushy. Everything they touch becomes dynamic. 
Perform an operation where any one of the parameters is dynamic, and the 
result is dynamic. Return a dynamic object from a method, and every-
where that dynamic is used becomes a dynamic object. It’s like watching 
bread mold grow in a petri dish. Pretty soon, everything is dynamic, and 
there’s no type safety left anywhere.

Biologists grow cultures in petri dishes, restricting where they can grow. 
You need to do the same with dynamic: Do the work with dynamic objects 
in an isolated environment and return objects that are statically typed as 
something other than dynamic. Otherwise, dynamic becomes a bad influ-
ence, and slowly, everything involved in your application will be dynamic.

This is not to imply that dynamic is universally bad. Other items in this 
chapter have shown you some of the techniques where dynamic pro-
gramming is an excellent solution. However, dynamic typing and static 
typing are very different, with different practices, different idioms, and dif-
ferent strategies. Mixing the two without regard will lead to numerous 
errors and inefficiencies. C# is a statically typed language, enabling 
dynamic typing in some areas. Therefore, if you’re using C#, you should 
spend most of your time using static typing and minimize the scope of 
the dynamic features. If you want to write programs that are dynamic 
through and through, you should consider a language that is dynamic 
rather than a static typed language.

If you’re going to use dynamic features in your program, try to keep them 
out of the public interface to your types. That way, you can use dynamic 
typing in a single object (or type) petri dish without having them escape
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into the rest of your program, or into all the code developed by develop-
ers who use your objects.

One scenario where you will use dynamic typing is to interact with objects 
created in dynamic environments, such as IronPython. When your design 
makes use of dynamic objects created using dynamic languages, you 
should wrap them in C# objects that enable the rest of the C# world to 
blissfully ignore the fact that dynamic typing is even happening.

You may want to pick a different solution for those situations where you 
use dynamic to produce duck typing. Look at the usages of the duck typ-
ing sample from Item 38. In every case, the result of the calculation was 
dynamic. That might not look too bad. But, the compiler is doing quite a 
bit of work to make this work. These two lines of code (see Item 38):

dynamic answer = Add(5, 5); 

Console.WriteLine(answer);

turn into this to handle dynamic objects:

// Compiler generated, not legal user C# code 

object answer = Add(5, 5); 

if (<Main>o__SiteContainer0.<>p__Site1 == null) 

{

<Main>o__SiteContainer0.<>p__Site1 = 

CallSite<Action<CallSite, Type, object>>.Create( 

new CSharpInvokeMemberBinder( 

CSharpCallFlags.None, "WriteLine", 

typeof(Program), null, new CSharpArgumentInfo[] 

{

new CSharpArgumentInfo( 

CSharpArgumentInfoFlags.IsStaticType | 

CSharpArgumentInfoFlags.UseCompileTimeType, 

null), 

new CSharpArgumentInfo(

CSharpArgumentInfoFlags.None, 

null)

})); 

} 

<Main>o__SiteContainer0.<>p__Site1.Target.Invoke(

<Main>o__SiteContainer0.<>p__Site1, 

typeof(Console), answer);
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Dynamic is not free. There’s quite a bit of code generated by the compiler 
to make dynamic invocation work in C#. Worse, this code will be repeated 
everywhere that you invoke the dynamic Add() method. That’s going to 
have size and performance implications on your application. You can wrap 
the Add() method shown in Item 38 in a bit of generic syntax to create a 
version that keeps the dynamic types in a constrained location. The same 
code will be generated but in fewer places:

private static dynamic DynamicAdd(dynamic left, 

dynamic right)

{

return left + right; 

}

// Wrap it: 

public static T1 Add<T1, T2>(T1 left, T2 right) 

{

dynamic result = DynamicAdd(left, right); 

return (T1)result;

}

The compiler generates all the dynamic callsite code in the generic Add() 
method. That isolates it into one location. Furthermore, the callsites 
become quite a bit simpler. Where previously every result was dynamic, 
now the result is statically typed to match the type of the first argument. 
Of course, you can create an overload to control the result type:

public static TResult Add<T1, T2, TResult> 

(T1 left, T2 right)

{

dynamic result = DynamicAdd(left, right); 

return (TResult)result;

}

In either case, the callsites live completely in the strongly typed world:

int answer = Add(5, 5);

Console.WriteLine(answer);

double answer2 = Add(5.5, 7.3); 

Console.WriteLine(answer2);
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// Type arguments needed because 

// args are not the same type 

answer2 = Add<int, double, double>(5, 12.3); 

Console.WriteLine(answer);

string stringLabel = System.Convert.ToString(answer);

string label = Add("Here is ", "a label"); 

Console.WriteLine(label);

DateTime tomorrow = Add(DateTime.Now, TimeSpan.FromDays(1)); 

Console.WriteLine(tomorrow);

label = "something" + 3;

Console.WriteLine(label); 

label = Add("something", 3); 

Console.WriteLine(label);

The above code is the same example from Item 38. Notice that this version 
has static types that are not dynamic as the return values. That means the 
caller does not need to work with dynamically typed objects. The caller 
works with static types, safely ignoring the machinations you needed to 
perform to make the operation work. In fact, they don’t need to know that 
your algorithm ever left the safety of the type system.

Throughout the samples in this chapter, you saw that dynamic types are 
kept isolated to the smallest scope possible. When the code needs to use 
dynamic features, the samples show a local variable that is dynamic. The 
methods would convert that dynamic object into a strongly typed object 
and the dynamic object never left the scope of the method. When you use 
a dynamic object to implement an algorithm, you can avoid having that 
dynamic object be part of your interface. Other times, the very nature of 
the problem requires that a dynamic object be part of the interface. That is 
still not an excuse to make everything dynamic. Only the members that 
rely on dynamic behavior should use dynamic objects. You can mix 
dynamic and static typing in the same API. You want to create code that is 
statically typed when you can. Use dynamic only when you must.

We all have to work with CSV data in different forms. Reading and pars-
ing the CSV data is a relatively simple exercise, but a general solution is 
almost always lacking. This snippet of code reads two different CSV files 
with different headers and displays the items in each row:
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var data = new CSVDataContainer( 

new System.IO.StringReader(myCSV));

foreach (var item in data.Rows) 

Console.WriteLine("{0}, {1}, {2}", 

item.Name, item.PhoneNumber, item.Label);

data = new CSVDataContainer( 

new System.IO.StringReader(myCSV2));

foreach (var item in data.Rows) 

Console.WriteLine("{0}, {1}, {2}", 

item.Date, item.high, item.low);

That’s the API style I want for a general CSV reader class. The rows 
returned from enumerating the data contain properties for every row 
header name. Obviously, the row header names are not known at compile 
time. Those properties must be dynamic. But nothing else in the 
CSVDataContainer needs to be dynamic. The CSVDataContainer does 
not support dynamic typing. However, the CSVDataContainer does con-
tain APIs that return a dynamic object that represents a row:

public class CSVDataContainer 

{

private class CSVRow : DynamicObject 

{

private List<Tuple<string, string>> values = 

new List<Tuple<string, string>>();

public CSVRow(IEnumerable<string> headers, 

IEnumerable<string> items) 

{

values.AddRange(headers.Zip(items, 

(header, value) => Tuple.Create(header,

value)));

}

public override bool TryGetMember(

GetMemberBinder binder, 

out object result)

{

var answer = values.FirstOrDefault(n => 

n.Item1 == binder.Name); 

result = answer.Item2;
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return result != null; 

}

} 

private List<string> columnNames = new List<string>(); 

private List<CSVRow> data = new List<CSVRow>();

public CSVDataContainer(System.IO.TextReader stream) 

{

// read headers: 

var headers = stream.ReadLine(); 

columnNames = 

(from header in headers.Split(',') 

select header.Trim()).ToList();

var line = stream.ReadLine(); 

while (line != null) 

{

var items = line.Split(','); 

data.Add(new CSVRow(columnNames, items)); 

line = stream.ReadLine();

} 

} 

public dynamic this[int index] 

{

get { return data[index]; } 

} 

public IEnumerable<dynamic> Rows 

{

get { return data; } 

}

}

Even though you need to expose a dynamic type as part of your interface, 
it’s only where the dynamicism is needed. Those APIs are dynamic. They 
must be. You can’t support any possible CSV format without having 
dynamic support for column names. You could have chosen to expose 
everything using dynamic. Instead, dynamic appears in the interface only 
where the functionality demands dynamic.

For space purposes, I elided other features in the CSVDataContainer. 
Think about how you would implement RowCount, ColumnCount,
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GetAt(row, column), and other APIs. The implementation you have in 
your head would not use dynamic objects in the API, or even in the imple-
mentation. You can meet those requirements with static typing. You 
should. You’d only use dynamic in the public interface when it is needed.

Dynamic types are a useful feature, even in a statically typed language like 
C#. However, C# is still a statically typed language. The majority of C# 
programs should make the most out of the type system provided by the 
language. Dynamic programming is still useful, but it’s most useful in C# 
when you keep it confined to those locations where it’s needed and con-
vert dynamic objects into a different static type immediately. When your 
code relies on a dynamic type created in another environment, wrap those 
dynamic objects and provide a public interface using different static types.
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6 ❘ Miscellaneous

275

Some items don’t fit convenient categories. But that does not limit their 
importance. Understanding exception-handling strategies is important for 
everyone. Other recommendations are constantly changing because C# is 
a living language, with an active community and an evolving standard. 
Still others may feel outdated, and yet still resonate today. This chapter 
contains those items that just don’t fit easy categories.

Item 45: Minimize Boxing and Unboxing

Value types are containers for data. They are not polymorphic types. On 
the other hand, the .NET Framework was designed with a single reference 
type, System.Object, at the root of the entire object hierarchy. These two 
goals are at odds. The .NET Framework uses boxing and unboxing to 
bridge the gap between these two goals. Boxing places a value type in an 
untyped reference object to allow the value type to be used where a refer-
ence type is expected. Unboxing extracts a copy of that value type from 
the box. Boxing and unboxing are necessary for you to use value types 
where the System.Object type is expected. But boxing and unboxing are 
always performance-robbing operations. Sometimes, when boxing and 
unboxing also create temporary copies of objects, it can lead to subtle bugs 
in your programs. Avoid boxing and unboxing when possible.

Boxing converts a value type to a reference type. A new reference object, 
the box, is allocated on the heap, and a copy of the value type is stored 
inside that reference object. See Figure 6.1 for an illustration of how the 
boxed object is stored and accessed. The box contains the copy of the value 
type object and duplicates the interfaces implemented by the boxed 
value type. When you need to retrieve anything from the box, a copy of the 
value type gets created and returned. That’s the key concept of boxing and 
unboxing: A copy of the value goes in the box, and another gets created 
whenever you access what’s in the box.
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In many ways, the addition of generics in .NET 2.0 means that you can 
avoid boxing and unboxing simply by using generic classes and generic 
methods. That is certainly the most powerful way to create code that uses 
value types without unnecessary boxing operations. However, there are 
many locations in the .NET Framework where methods have parameters 
typed as System.Object. Those APIs will still produce boxing and unbox-
ing operations. It happens automatically. The compiler generates the box-
ing and unboxing instructions whenever you use a value type where a 
reference type, such as System.Object, is expected. In addition, the boxing 
and unboxing operations occur when you use a value type through an 
interface pointer. You get no warnings—boxing just happens. Even a sim-
ple statement such as this performs boxing:

Console.WriteLine("A few numbers:{0}, {1}, {2}", 

25, 32, 50);

The referenced overload of Console.WriteLine takes an array of System 
.Object references. ints are value types and must be boxed so that they can 
be passed to this overload of the WriteLine method. The only way to coerce 
the three integer arguments into System.Object is to box them. In addition, 
inside WriteLine, code reaches inside the box to call the ToString() method 
of the object in the box. In a sense, you have generated this construct:

Figure 6.1 Value type in a box. To convert a value type into a System.Object 
reference, an unnamed reference type is created. The value type is stored 
inline inside the unnamed reference type. All methods that access the 
value type are passed through the box to the stored value type.

Reference Type Container 
(The Box)

Allocated on the Heap

Value Type 
Contained in the Box

System.Object 
Interface

Mirror Value Type Interface
Pass Through



ptg

int i = 25; 

object o = i; // box 

Console.WriteLine(o.ToString());

Inside WriteLine, the following code executes:

private static void SampleThree() 

{

object firstParm = 5;

object o = firstParm; 

int i = (int)o; // unbox 

string output = i.ToString();

}

You would never write this code yourself. However, by letting the com-
piler automatically convert from a specific value type to System.Object, 
you did let it happen. The compiler was just trying to help you. It wants 
you to succeed. It happily generates the boxing and unboxing statements 
necessary to convert any value type into an instance of System.Object. To 
avoid this particular penalty, you should convert your types to string 
instances yourself before you send them to WriteLine:

Console.WriteLine("A few numbers:{0}, {1}, {2}",

25.ToString(), 32.ToString(), 50.ToString());

This code uses the known type of integer, and value types (integers) are 
never implicitly converted to System.Object. This common example illus-
trates the first rule to avoid boxing: Watch for implicit conversions to
 System.Object. Value types should not be substituted for System.Object if 
you can avoid it.

Another common case in which you might inadvertently substitute a value 
type for System.Object is when you place value types in .NET 1.x collec-
tions. You should use the generic collections added in the 2.0 version of the 
.NET Base Class Library (BCL) over the 1.x object based collections. How-
ever, some components in the .NET BCL still use the 1.x style collections. 
You should understand the issues and how to avoid them.

The first incarnation of the .NET Framework collections store references 
to System.Object instances. Anytime you add a value type to a collection, 
it goes in a box. Anytime you remove an object from a collection, it gets 
copied from the box. Taking an object out of the box always makes a copy.
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That introduces some subtle bugs in your application. The compiler does 
not help you find these bugs. It’s all because of boxing. Start with a sim-
ple structure that lets you modify one of its fields, and put some of those 
objects in a collection:

public struct Person 

{

public string Name { get; set; }

public override string ToString() 

{

return Name; 

}

}

// Using the Person in a collection: 

var attendees = new List<Person>();

Person p = new Person { Name = "Old Name" }; 

attendees.Add(p);

// Try to change the name: 

// Would work if Person was a reference type. 

Person p2 = attendees[0]; 

p2.Name = "New Name";

// Writes "Old Name":

Console.WriteLine(attendees[0].ToString( ));

Person is a value type. The JIT compiler creates a specific closed generic 
type for List<Person> so that Person objects are not boxed, because they 
are stored in the attendees collection. Another copy gets made when you 
remove the Person object to access the Name property to change. All you 
did was change the copy. In fact, a third copy was made to call the 
ToString() function through the attendees[0] object. For this and many 
other reasons, you should create immutable value types (see Item 20).

Yes, value types can be converted to System.Object or any interface refer-
ence. That conversion happens implicitly, complicating the task of finding 
them. Those are the rules of the environment and the language. The box-
ing and unboxing operations make copies where you might not expect. 
That causes bugs. There is also a performance cost to treating value types
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polymorphically. Be on the lookout for any constructs that convert value 
types to either System.Object or interface types: placing values in collec-
tions, calling methods defined in System.Object, and casts to System.Object. 
Avoid these whenever you can.

Item 46: Create Complete Application-Specific Exception Classes

Exceptions are the mechanism of reporting errors that might be handled 
at a location far removed from the location where the error occurred. All 
the information about the error’s cause must be contained in the excep-
tion object. Along the way, you might want to translate a low-level error to 
more of an application-specific error, without losing any information 
about the original error. You need to be very thoughtful about when you 
create your own specific exception classes in your C# applications.

The first step is to understand when and why to create new exception 
classes, and how to construct informative exception hierarchies. When 
developers using your libraries write catch clauses, they differentiate 
actions based on the specific runtime type of the exception. Each different 
exception class can have a different set of actions taken:

try 

{

Foo();

Bar();

} 

catch (MyFirstApplicationException e1) 

{

FixProblem(e1); 

} 

catch (AnotherApplicationException e2) 

{

ReportErrorAndContinue(e2); 

} 

catch (YetAnotherApplicationException e3) 

{

ReportErrorAndShutdown(e3); 

} 

catch (Exception e) 

{
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ReportGenericError(e); 

throw;

} 

finally 

{

CleanupResources(); 

}

Different catch clauses can exist for different runtime types of exceptions. 
You, as an application author, must create or use different exception classes 
when catch clauses might take different actions. Note that every different 
exception above is handled in a different way. Developers only want to 
provide different catch clauses for different exception classes when the 
handling is different. Otherwise, it’s just extra work. Therefore, you should 
consider creating different exception classes only when you believe devel-
opers will take different actions for the problems that cause the exception. 
If you don’t, your users are left with only unappealing options. You can punt 
and terminate the application whenever an exception gets thrown. That’s 
certainly less work, but it won’t win kudos from users. Or, they can reach 
into the exception to try to determine whether the error can be corrected:

private static void SampleTwo() 

{

try 

{

Foo();

Bar();

} 

catch (Exception e) 

{

switch (e.TargetSite.Name) 

{

case "Foo": 

FixProblem(e); 

break;

case "Bar": 

ReportErrorAndContinue(e); 

break;

// some routine called by Foo or Bar: 

default:

ReportErrorAndShutdown(e);
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throw; 

}

} 

finally 

{

CleanupResources(); 

}

}

That’s far less appealing than using multiple catch clauses. It’s very brit-
tle code: If you change the name of a routine, it’s broken. If you move the 
error-generating calls into a shared utility function, it’s broken. The deeper 
into the call stack that an exception is generated, the more fragile this kind 
of construct becomes.

Before going any deeper into this topic, let me add two disclaimers. First, 
exceptions are not for every error condition you encounter. There are no 
firm guidelines, but I prefer throwing exceptions for error conditions that 
cause long-lasting problems if they are not handled or reported immedi-
ately. For example, data integrity errors in a database should generate an 
exception. The problem only gets bigger if it is ignored. Failure to correctly 
write the user’s window location preferences is not likely to cause far-
reaching consequences. A return code indicating the failure is sufficient.

Second, writing a throw statement does not mean it’s time to create a new 
exception class. My recommendation on creating more rather than fewer 
exception classes comes from normal human nature: People seem to grav-
itate to overusing System.Exception anytime they throw an exception. That 
provides the least amount of helpful information to the calling code. 
Instead, think through and create the necessary exceptions classes to enable 
calling code to understand the cause and provide the best chance of recovery.

I’ll say it again: The reason for different exception classes—in fact, the only 
reason—is to make it easier to take different actions when your users write
catch handlers. Look for those error conditions that might be candidates 
for some kind of recovery action and create specific exception classes to 
handle those actions. Can your application recover from missing files and 
directories? Can it recover from inadequate security privileges? What about 
missing network resources? Create new exception classes when you encounter 
errors that might lead to different actions and recovery mechanisms.

So now you are creating your own exception classes. You do have very spe-
cific responsibilities when you create a new exception class. Your exception
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class must end in “Exception”. You should always derive your exception 
classes from the System.Exception class, or some other appropriate excep-
tion class. You will rarely add capabilities to this base class. The purpose of 
different exception classes is to have the capability to differentiate the cause 
of errors in catch clauses.

But don’t take anything away from the exception classes you create, either. 
The Exception class contains four constructors:

// Default constructor 

public Exception();

// Create with a message. 

public Exception(string);

// Create with a message and an inner exception. 

public Exception(string, Exception);

// Create from an input stream. 

protected Exception(

SerializationInfo, StreamingContext);

When you create a new exception class, create all four of these construc-
tors. Notice that the last constructor implies that your exception class must 
be Serializable. Different situations call for the different methods of con-
structing exceptions. (If you choose to derive from a different exception 
class, you should include all the appropriate constructors from that par-
ticular base class.) You delegate the work to the base class implementation:

[Serializable] 

public class MyAssemblyException :

Exception 

{

public MyAssemblyException() : 

base()

{ 

}

public MyAssemblyException(string s) : 

base(s)

{ 

}
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public MyAssemblyException(string s, 

Exception e) : 

base(s, e)

{ 

}

protected MyAssemblyException( 

SerializationInfo info, StreamingContext cxt) : 

base(info, cxt)

{ 

}

}

The constructors that take an exception parameter deserve a bit more dis-
cussion. Sometimes, one of the libraries you use generates an exception. 
The code that called your library will get minimal information about the 
possible corrective actions when you simply pass on the exceptions from 
the utilities you use:

public double DoSomeWork() 

{

// This might throw an exception defined 

// in the third party library: 

return ThirdPartyLibrary.ImportantRoutine();

}

You should provide your own library’s information when you generate 
the exception. Throw your own specific exception and include the origi-
nal exception as its InnerException property. You can provide as much 
extra information as you can generate:

public double DoSomeWork() 

{

try { 

// This might throw an exception defined 

// in the third party library: 

return ThirdPartyLibrary.ImportantRoutine();

} catch(ThirdPartyException e) 

{

string msg = 

string.Format("Problem with {0} using library",

ToString());
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throw new DoingSomeWorkException(msg, e); 

}

} 

}

This new version creates more information at the point where the prob-
lem is generated. As long as you have created a proper ToString() method 
(see Item 5), you’ve created an exception that describes the complete state 
of the object that generated the problem. More than that, the inner excep-
tion shows the root cause of the problem: something in the third-party 
library you used.

This technique is called exception translation, translating a low-level 
exception into a more high-level exception that provides more context 
about the error. The more information you generate when an error occurs, 
the easier it will be for users to diagnose and possibly correct the error. By 
creating your own exception types, you can translate low-level generic 
problems into specific exceptions that contain all the application-specific 
information that you need to fully diagnose and possibly correct the
 problem.

Your application will throw exceptions—hopefully not often, but it will 
happen. If you don’t do anything specific, your application will generate 
the default .NET Framework exceptions whenever something goes wrong 
in the methods you call on the core framework. Providing more detailed 
information will go a long way to enabling you and your users to diagnose 
and possibly correct errors in the field. You create different exception 
classes when different corrective actions are possible and only when dif-
ferent actions are possible. You create full-featured exception classes by 
providing all the constructors that the base exception class supports. You 
use the InnerException property to carry along all the error information 
generated by lower-level error conditions.

Item 47: Prefer the Strong Exception Guarantee

When you throw an exception, you’ve introduced a disruptive event into 
the application. Control flow has been compromised. Expected actions did 
not occur. Worse, you’ve left the cleanup operation to the programmer 
writing the code that eventually catches the exception. The actions avail-
able when you catch exceptions are directly related to how well you man-
age program state when an exception gets thrown. Thankfully, the C#
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community does not need to create its own strategies for exception safety; 
the C++ community did all the hard work for us. Starting with Tom 
Cargill’s article “Exception Handling: A False Sense of Security,” and con-
tinuing with writings by Dave Abrahams, Herb Sutter, Scott Meyers, Matt 
Austern, and Greg Colvin, the C++ community developed a series of best 
practices that we can adapt to C# applications. The discussions on excep-
tion handling occurred over the course of six years, from 1994 to 2000. 
They discussed, debated, and examined many twists on a difficult problem. 
We should leverage all that hard work in C#.

Dave Abrahams defined three exception-safe guarantees: the basic guar-
antee, the strong guarantee, and the no-throw guarantee. Herb Sutter dis-
cussed these guarantees in his book Exceptional C++ (Addison-Wesley, 
2000). The basic guarantee states that no resources are leaked and all 
objects are in a valid state after your exception leaves the function emitting 
it. That means after any finally clauses have run in the method that 
throws the exception. The strong exception guarantee builds on the basic 
guarantee and adds that if an exception occurs, the program state did not 
change. The no-throw guarantee states that an operation never fails, from 
which it follows that a method does not ever throw exceptions. The strong 
exception guarantee provides the best tradeoff between recovering from 
exceptions and simplifying exception handling.

You get some help on the basic guarantee from the .NET CLR. The envi-
ronment handles memory management. The only way you can leak 
resources due to exceptions is to throw an exception while you own a 
resource that implements IDisposable. Item 15 explains how to avoid leak-
ing resources in the face of exceptions. But that’s only part of the story. 
You are still responsible for ensuring that your object’s state is valid. Sup-
pose your type caches the size of a collection, along with the collection. 
You’d need to ensure that the size matches the actual storage after an Add() 
operation threw an exception. There are countless actions your application 
may have that if only partially completed would leave your application in 
an invalid state. These cases are harder to handle, because there are fewer 
standard idioms for automatic support. Many of these issues can be best 
solved by adhering to the strong guarantee.

The strong guarantee states that if an operation terminates because of an 
exception, program state remains unchanged. Either an operation com-
pletes or it does not modify program state; there is no middle ground. The 
advantage of the strong guarantee is that you can more easily continue
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execution after catching an exception when the strong guarantee is fol-
lowed. Anytime you catch an exception, whatever operation was attempted 
did not occur. It did not start, and it did not make some changes. The state 
of the program is as though you did not start the action.

Many of the recommendations I made earlier will help ensure that you 
meet the strong exception guarantee. Data elements that your program 
uses should be stored in immutable value types (see Items 18 and 20). You 
can also use the functional programming style, such as with LINQ queries. 
That programming style automatically follows the strong exception
 guarantee.

Sometimes, you can’t use functional programming for styles. If you com-
bine those two items, any modification to program state can easily take 
place after performing any operation that might throw an exception. The 
general guideline is to perform any data modifications in the following 
manner:

1. Make defensive copies of data that will be modified.
2. Perform any modifications to these defensive copies of the data. This 

includes any operations that might throw an exception.
3. Swap the temporary copies back to the original. This operation can-

not throw an exception.

As an example, the following code updates an employee’s title and pay 
using defensive copy:

public void PhysicalMove(string title, decimal newPay) 

{

// Payroll data is a struct: 

// ctor will throw an exception if fields aren't valid. 

PayrollData d = new PayrollData(title, newPay,

this.payrollData.DateOfHire);

// if d was constructed properly, swap: 

this.payrollData = d;

}

Sometimes, the strong guarantee is just too inefficient to support, and 
sometimes you cannot support the strong guarantee without introducing 
subtle bugs. The first and simplest case is looping constructs. When the 
code inside a loop modifies the state of the program and might throw an
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exception, you are faced with a tough choice: You can either create a defen-
sive copy of all the objects used in the loop, or you can lower your expec-
tations and support only the basic exception guarantee. There are no hard 
and fast rules, but copying heap-allocated objects in a managed environ-
ment is not as expensive as it was in native environments. A lot of time 
has been spent optimizing memory management in .NET. I prefer to sup-
port the strong exception guarantee whenever possible, even if it means 
copying a large container: The capability to recover from errors outweighs 
the small performance gain from avoiding the copy. In special cases, it 
doesn’t make sense to create the copy. If any exceptions would result in 
terminating the program anyway, it makes no sense to worry about the 
strong exception guarantee. The larger concern is that swapping reference 
types can lead to program errors. Consider this example:

private BindingList<PayrollData> data; 

public IBindingList MyCollection 

{

get { return data; } 

}

public void UpdateData() 

{

// Unreliable operation might fail: 

var temp = UnreliableOperation();

// This operation will only happen if 

// UnreliableOperation does not throw an 

// exception. 

data = temp;

}

This looks like a great use of the defensive copy mechanism. You’ve created 
a copy of your data. Then you grab new data from somewhere to fill the 
temporary data. Finally, you swap the temporary storage back. It looks 
great. If anything goes wrong trying to retrieve the data, you have not made 
any changes.

There’s only one problem: It doesn’t work. The MyCollection property 
returns a reference to the data object (see Item 26). All the clients of this 
class are left holding references to the original BindingList<> after you call 
UpdateData. They are looking at the old view of the data. The swap trick
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does not work for reference types—it works only for value types. To fix 
this, you need to replace the data in the current reference object, and 
ensure that you do it in such a way that it can never throw an exception. 
That is difficult, because it is two different atomic operations: removing all 
the existing objects in the collection and adding all the new objects. You 
might consider that the risk is small of removing and adding the new 
items:

private BindingList<PayrollData> data; 

public IBindingList MyCollection 

{

get 

{

return data; 

}

}

public void UpdateData() 

{

// Unreliable operation might fail: 

var temp = UnreliableOperation();

// These operations will only happen if 

// UnreliableOperation does not throw an 

// exception. 

data.Clear(); 

foreach (var item in temp)

data.Add(item); 

}

That is a reasonable, but not a bulletproof, solution. I mention it because 
“reasonable” is often the bar you need. However, when you do need bul-
letproof, you need to do more work. The envelope-letter pattern will hide 
the internal swapping in an object that enables you to make the swap safely.

The envelope-letter pattern hides the implementation (letter) inside a 
wrapper (envelope) that you share with public clients of your code. In this 
example, you’ll create a class that wraps the collection and implements the 
IBindingList<PayrollData>. That class contains the BindingList<PayrollData> 
and exposes all its methods to class clients.
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Your class now works with the envelope class to handle its internal data.

private Envelope data; 

public IBindingList MyCollection 

{

get 

{

return data; 

}

}

public void UpdateData() 

{

data.SafeUpdate(UnreliableOperation()); 

}

The Envelope class implements the IBindingList by forwarding every 
request to the contained BindingList<PayrollData>:

public class Envelope : IBindingList 

{

private BindingList<PayrollData> data = 

new BindingList<PayrollData>();

#region IBindingList Members 

public void AddIndex(PropertyDescriptor property)

{ (data as IBindingList).AddIndex(property); }

public object AddNew() { return data.AddNew(); }

public bool AllowEdit { get { return data.AllowEdit; } }

public bool AllowNew { get { return data.AllowNew; } }

public bool AllowRemove 

{ get { return data.AllowRemove; } }

public void ApplySort(PropertyDescriptor property,

ListSortDirection direction) 

{ (data as IBindingList).

ApplySort(property, direction); }
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public int Find(PropertyDescriptor property, object key) 

{ return (data as IBindingList).Find(property, key); }

public bool IsSorted 

{ get { return (data as IBindingList).IsSorted; } }

private ListChangedEventHandler listChangedHandler;

public event ListChangedEventHandler ListChanged 

{

add { listChangedHandler += value; } 

remove { listChangedHandler -= value; }

}

public void RemoveIndex(PropertyDescriptor property) 

{ (data as IBindingList).RemoveIndex(property); }

public void RemoveSort() 

{ (data as IBindingList).RemoveSort(); }

public ListSortDirection SortDirection 

{ get { return (data as IBindingList).SortDirection; } }

public PropertyDescriptor SortProperty 

{get { return (data as IBindingList).SortProperty;}}

public bool SupportsChangeNotification 

{ get { return (data as IBindingList).

SupportsChangeNotification; } }

public bool SupportsSearching 

{get {return (data as IBindingList).SupportsSearching;}}

public bool SupportsSorting 

{get {return (data as IBindingList).SupportsSorting;}} 

#endregion

#region IList Members 

public int Add(object value) 

{
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if (value is PayrollData) 

data.Add((PayrollData)value);

return data.Count; 

}

public void Clear() { data.Clear(); }

public bool Contains(object value) 

{

if (value is PayrollData) 

return data.Contains((PayrollData)value);

else 

// If the argument isn't the right type, 

// it must not be here. 

return false;

}

public int IndexOf(object value) 

{

if (value is PayrollData) 

return data.IndexOf((PayrollData)value);

else 

return -1;

}

public void Insert(int index, object value) 

{ if (value is PayrollData)

data.Insert(index, (PayrollData)value); }

public bool IsFixedSize 

{ get { return (data as IBindingList).IsFixedSize; } }

public bool IsReadOnly 

{ get { return (data as IBindingList).IsReadOnly; } }

public void Remove(object value) 

{

if (value is PayrollData) 

data.Remove((PayrollData)value);

}
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public void RemoveAt(int index) 

{ data.RemoveAt(index); }

public object this[int index] 

{

get { return data[index]; } 

set {

if (value is PayrollData) 

data[index] = (PayrollData)value; }

} 

#endregion

#region ICollection Members 

public void CopyTo(Array array, int index)

{ (data as System.Collections.ICollection). 

CopyTo(array, index); }

public int Count { get { return data.Count; } }

public bool IsSynchronized 

{ get { return (data as

System.Collections.ICollection).IsSynchronized;}}

public object SyncRoot 

{ get { return (data as

System.Collections.ICollection).SyncRoot; } } 

#endregion

#region IEnumerable Members 

public System.Collections.IEnumerator GetEnumerator()

{ return data.GetEnumerator(); } 

#endregion

public void SafeUpdate(IEnumerable<PayrollData> 

bindingList)

{

// make the copy:

BindingList<PayrollData> updates = 

new BindingList<PayrollData>(bindingList.ToList());

292 ❘ Chapter 6  Miscellaneous



ptg

// swap:

System.Threading.Interlocked.Exchange

<BindingList<PayrollData>>(ref data, updates); 

}

}

There is a lot of boilerplate code to examine, and much of it is straight-
forward. However, there are a few important parts that you should exam-
ine with a bit more care. First, notice that a number of the members of the 
IBindingList interface are implemented explicitly by the BindingList<T> 
class. That is the reason for the casts included throughout many of the 
methods. Also, I’ve coded this based on the PayrollData type being a value 
type. If PayrollData was a reference type, this code would be a bit simpler. 
I made PayrollData a value type to demonstrate those differences. The type 
checks are based on that PayrollData being a value type (see Item 20). 
Finally, notice that the ListChangedEventHandler must be implemented 
explicitly so that you can forward the event handlers to the contained let-
ter object.

Of course, the point of this exercise was to create and implement the
 SafeUpdate method. Notice that it does essentially the same work that you 
did in place before. The only difference is that the swap is now accom-
plished by a call to Interlocked.Exchange. That guarantees that this code is 
safe, even in multithreaded applications. The swap cannot be interrupted.

In the general case, you cannot fix the problem of swapping reference types 
while still ensuring that all clients have the current copy of the object. 
Swapping works for value types only. That should be sufficient, if you’re 
following the advice of Item 18.

Last, and most stringent, is the no-throw guarantee. The no-throw guar-
antee is pretty much what it sounds like: A method satisfies the no-throw 
guarantee if it is guaranteed to always run to completion and never let an 
exception leave a method. This just isn’t practical for all routines in large 
programs. However, in a few locations, methods must enforce the no-
throw guarantee. Finalizers and Dispose methods must not throw excep-
tions. In both cases, throwing an exception can cause more problems than 
any other alternative. In the case of a finalizer, throwing an exception ter-
minates the program without further cleanup. Wrapping a large method 
in a try/catch block and swallowing all exceptions is how you achieve 
this no-throw guarantee. Most methods that must satisfy the no-throw 
guarantee, such as Dispose() and Finalize(), have limited responsibilities.
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Therefore, you should be able to write these methods so that they satisfy 
the no-throw guarantee by writing defensive code.

In the case of a Dispose method throwing an exception, the system might 
now have two exceptions running through the system. The .NET envi-
ronment loses the first exception and throws the new exception. You can’t 
catch the initial exception anywhere in your program; it was eaten by the 
system. This greatly complicates your error handling. How can you recover 
from an error you don’t see?

The last location for the no-throw guarantee is in delegate targets. When 
a delegate target throws an exception, none of the other delegate targets 
gets called from the same multicast delegate. The only way around this is 
to ensure that you do not throw any exceptions from a delegate target. Let’s 
state that again: Delegate targets (including event handlers) should not 
throw exceptions. Doing so means that the code raising the event cannot 
participate in the strong exception guarantee. But here, I’m going to mod-
ify that advice. Item 24 showed how you can invoke delegates so that you 
can recover from exceptions. Not everyone does, though, so you should 
avoid throwing exceptions in delegate handlers. Just because you don’t 
throw exceptions in delegates does not mean that others follow that advice; 
do not rely on the no-throw guarantee for your own delegate invocations. 
It’s that defensive programming: You should do the best you can because 
other programmers might do the worst they can.

Exceptions introduce serious changes to the control flow of an applica-
tion. In the worst case, anything could have happened—or not happened. 
The only way to know what has and hasn’t changed when an exception is 
thrown is to enforce the strong exception guarantee. Then an operation 
either completes or does not make any changes. Finalizers, Dispose(), and 
delegate targets are special cases and should complete without allowing 
exceptions to escape under any circumstances. As a last word, watch carefully 
when swapping reference types; it can introduce numerous subtle bugs.

Item 48: Prefer Safe Code

The .NET runtime has been designed so that malicious code cannot infil-
trate and execute on a remote machine. Yet some distributed systems rely 
on downloading and executing code from remote machines. If you might 
be delivering your software via the Internet or an intranet, or running it 
directly from the Web, you need to understand the restrictions that the
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CLR will place on your assemblies. If the CLR does not fully trust an 
assembly, it limits the allowed actions. This is called code access security 
(CAS). On another axis, the CLR enforces role-based security, in which 
code might or might not execute based on a particular user account’s priv-
ileges. You’ll also see these effects when you create Silverlight applications 
that run in a browser. The browser model imposes security restrictions on 
any code running in that environment.

Security violations are runtime conditions; the compiler cannot enforce 
them. Furthermore, they are far less likely to show up on your develop-
ment machine; code that you compile is loaded from your hard drive and, 
therefore, has a higher trust level. Discussing all the implications of the 
.NET Security model fills volumes, but you can take a small set of reason-
able actions to enable your assemblies to interact with the .NET security 
model more easily. These recommendations apply only if you are creating 
library components, or components and programs that might be deliv-
ered across the Web.

Throughout this discussion, remember that .NET is a managed environ-
ment. The environment guarantees a certain amount of safety. The bulk 
of the .NET Framework library is granted full trust through the .NET con-
fig policy when it is installed. It is verifiably safe, which means that the 
CLR can examine the IL and ensure that it does not perform any poten-
tially dangerous actions, such as accessing raw memory. It does not assert 
any particular security rights needed to access local resources. You should 
try to follow that same example. If your code does not need any particu-
lar security rights, avoid using any of the CAS APIs to determine your 
access rights; all you do is decrease performance.

You will use the CAS APIs to access a small set of protected resources that 
demand increased privileges. The most common protected resources are 
unmanaged memory and the file system. Other protected resources 
include databases, network ports, the Windows Registry, and the printing 
subsystem. In each case, attempting to access those resources fires excep-
tions when the calling code does not have the proper permissions. Fur-
thermore, accessing those resources might cause the runtime to perform 
a security stack walk to ensure that all assemblies in the current callstack 
have the proper permissions. Let’s look at memory and the file system, dis-
cussing the best practices for a secure and safe program.

You can avoid unmanaged memory access by creating verifiably safe 
assemblies whenever possible. A safe assembly is one that does not use any
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pointers to access either the managed or unmanaged heaps. Whether you 
knew it or not, almost all the C# code that you create is safe. Unless you 
turn on the /unsafe C# compiler option, you’ve created verifiably safe 
code. /unsafe allows the use of pointers, which the CLR cannot verify.

The reasons to use unsafe code are few, with the most common being per-
formance. Pointers to raw memory are faster than safe reference checks. In 
a typical array, they can be up to ten times faster. But when you use unsafe 
constructs, understand that unsafe code anywhere in an assembly affects 
the entire assembly. When you create unsafe code blocks, consider isolat-
ing those algorithms in their own assembly (see Item 50). This limits the 
effect that unsafe code has on your entire application. If it’s isolated, only 
callers who need the particular feature are affected. You can still use the 
remaining safe functionality in more restrictive environments. You might 
also need unsafe code to deal with P/Invoke or COM interfaces that require 
raw pointers. The same recommendation applies: Isolate it. Unsafe code 
should affect its own small assembly and nothing else.

The advice for memory access is simple: Avoid accessing unmanaged 
memory whenever possible. When you do need to access unmanaged 
memory, you should isolate that access in a separate assembly.

The next most common security concern is the file system. Programs store 
data, often in files. Code that has been downloaded from the Internet does 
not have access to most locations on the file system—that would be a huge 
security hole. Yet, not accessing the file system at all would make it far more 
difficult to create usable programs. This problem is solved by using iso-
lated storage. Isolated storage can be thought of as a virtual directory that 
is isolated based on the assembly, the application domain, and the current 
user. Optionally, you can use a more general isolated storage virtual direc-
tory that is based on the assembly and the current user.

Partially trusted assemblies can access their own specific isolated storage 
area but nowhere else on the file system. The isolated storage directory is 
hidden from other assemblies and other users. You use isolated storage 
through the classes in the System.IO.IsolatedStorage namespace. The Iso-
latedStorageFile class contains methods very similar to the System.IO.File 
class. In fact, it is derived from the System.IO.FileStream class. The code to 
write to isolated storage is almost the same as writing to any file:

IsolatedStorageFile iso = 

IsolatedStorageFile.GetUserStoreForDomain();
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IsolatedStorageFileStream myStream = new 

IsolatedStorageFileStream("SavedStuff.txt", 

FileMode.Create, iso);

StreamWriter wr = new StreamWriter(myStream); 

// several wr.Write statements elided 

wr.Close();

Reading is equally familiar to anyone who has used file I/O:

IsolatedStorageFile isoStore = 

IsolatedStorageFile.GetUserStoreForDomain();

string[] files = isoStore.GetFileNames("SavedStuff.txt"); 

if (files.Length > 0) 

{

StreamReader reader = new StreamReader(new 

IsolatedStorageFileStream("SavedStuff.txt", 

FileMode.Open, isoStore));

// Several reader.ReadLines( ) calls elided.

reader.Close(); 

}

You can use isolated storage to persist reasonably sized data elements that 
enable partially trusted code to save and load information from a carefully 
partitioned location on the local disk. The .NET environment defines lim-
its on the size of isolated storage for each application. This prevents mali-
cious code from consuming excessive disk space, rendering a system 
unusable. Isolated storage is hidden from other programs and other users. 
Therefore, it should not be used for deployment or configuration settings 
that an administrator might need to manipulate. Even though it is hid-
den, however, isolated storage is not protected from unmanaged code or 
from trusted users. Do not use isolated storage for high-value secrets unless 
you apply additional encryption.

To create an assembly that can live within the possible security restrictions 
on the file system, isolate the creation of your storage streams. When your 
assembly might be run from the Web or might be accessed by code run 
from the Web, consider isolated storage.

You might need other protected resources as well. In general, access to 
those resources is an indication that your program needs to be fully
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trusted. The only alternative is to avoid the protected resource entirely. 
Consider the Windows Registry, for example. If your program needs to 
access the Registry, you must install your program to the end user’s com-
puter so that it has the necessary privileges to access the Registry. You sim-
ply can’t safely create a Registry editor that runs from the Web. That’s the 
way it should be.

The .NET Security model means that your program’s actions are checked 
against its rights. Pay attention to the rights your program needs and try 
to minimize them. Don’t ask for rights you don’t need. The fewer pro-
tected resources your assembly needs, the less likely it will generate secu-
rity exceptions. Avoid using secure resources, and consider alternatives 
whenever possible. When you do need higher security permissions for 
some algorithms, isolate that code in its own assembly.

Item 49: Prefer CLS-Compliant Assemblies

The .NET environment is language agnostic: Developers can incorporate 
components written in different .NET languages without limitations. In 
practice, it’s almost true. You must create assemblies that are compliant 
with the Common Language Subsystem (CLS) to guarantee that develop-
ers writing programs in other languages can use your components.

One of C#’s advantages is that because it was designed to run on the CLR, 
almost all of your C# assemblies will be CLS compliant. That’s not true 
for many other languages. Many F# constructs do not compile down to 
CLS-compliant types. DLR languages, such as IronPython and IronRuby, 
do not create CLS-compliant assemblies in this release. That’s one of the 
reasons C# is an excellent choice for component development in .NET. C# 
components can be consumed by all the languages that run on the CLR. 
That’s because it’s not that hard to create C# components that are CLS 
compliant.

CLS compliance is a new twist on that least common denominator 
approach to interoperability. The CLS specification is a subset of opera-
tions that every language must support. To create a CLS-compliant assem-
bly, you must create an assembly whose public interface is limited to those 
features in the CLS specification. Then any language supporting the CLS 
specification must be capable of using the component. This does not mean 
you must limit your entire programming palette to the CLS-compliant 
subset of the C# language, however.
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To create a CLS-compliant assembly, you must follow two rules. First, the 
type of all parameters and return values from public and protected mem-
bers must be CLS compliant. Second, any non-CLS-compliant public or 
protected member must have a CLS-compliant synonym.

The first rule is simple to follow: You can have it enforced by the compiler. 
Add the CLSCompliant attribute to your assembly:

[assembly: System.CLSCompliant(true)]

The compiler enforces CLS compliance for the entire assembly. If you write 
a public method or property that uses a construct that is not compliant 
with CLS, it’s an error. That’s good because it makes CLS compliance an 
easy goal. After turning on CLS compliance, these two definitions won’t 
compile because unsigned integers are not compliant with CLS:

// Not CLS Compliant, returns unsigned int: 

public UInt32 Foo() 

{

return foo; 

}

// Not CLS compliant, parameter is an unsigned int. 

public void Foo2(UInt32 parm) 

{ 

}

Remember that creating a CLS-compliant assembly affects only items that 
can be seen outside the current assembly. Foo and Foo2 generate CLS com-
pliance errors when declared either public or protected. However, if Foo and 
Foo2 were internal, or private, they could be included in a CLS-compliant 
assembly; CLS-compliant interfaces are required only for items that are 
exposed outside the assembly.

What about this property? Is it CLS compliant?

public MyClass TheProperty { get; set; }

It depends. If MyClass is CLS compliant and indicates that it is CLS com-
pliant, this property is CLS compliant. On the other hand, if MyClass is not 
marked as CLS compliant, this property is not CLS compliant. That means 
that the earlier TheProperty is CLS compliant only if MyClass resides in a 
CLS-compliant assembly.
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You cannot build a CLS-compliant assembly if you have types in your pub-
lic or protected interface that are not CLS compliant. If, as a component 
designer, you do not have an assembly marked as CLS compliant, you 
make it harder for users of your component to create CLS-compliant 
assemblies. They must hide your types and mirror the functionality in a 
CLS-compliant wrapper. Yes, this can be done. But, no, it’s not a good way 
to treat the programmers who want to use your components. It’s better to 
strive for CLS-compliant assemblies in all your work: This is the easiest way 
for clients to incorporate your work in their CLS-compliant assemblies.

The second rule is up to you: You need to make sure that you provide a
 language-agnostic way to perform all public and protected operations. You 
also need to make sure that you do not sneak a noncompliant object 
through your interface using polymorphism.

Operator overloading is a feature that some love and others hate. As such, 
not every language supports or allows operator overloading. The CLS stan-
dard does not take a pro or con stance on the concept of operator over-
loading. Instead, it defines a function name for each operator: op_equals 
is the function name created when you write an operator = function. 
op_add is the name for an overloaded addition operator. When you write 
an overloaded operator, the operator syntax can be used in languages that 
support overloaded operators. Developers using a language that does not 
support operator overloading must use the op_ function name. If you 
expect these programmers to use your CLS-compliant assembly, you 
should provide a more convenient syntax. That leads to this simple rec-
ommendation: Anytime you overload an operator, create a semantically 
equivalent function:

// Overloaded Addition operator, preferred C# syntax: 

public static Foo operator +(Foo left, Foo right) 

{

// Use the same implementation as the Add method: 

return Foo.Add(left, right);

}

// Static function, desirable for some languages: 

public static Foo Add(Foo left, Foo right) 

{

return new Foo(left.Bar + right.Bar); 

}
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Finally, watch out for non-CLS types sneaking into an interface when you 
use polymorphic arguments. It’s easy to do with event arguments. You can 
create a type that is not compliant with CLS and use it where a base type 
that is CLS-compliant is expected.

Suppose that you created this class derived from EventArgs:

public class BadEventArgs : EventArgs 

{

public UInt32 ErrorCode; 

}

The BadEventArgs type is not CLS compliant; you should not use it with 
event handlers written in other languages. But polymorphism makes this 
easy to do. You can declare the event type to use the base class, EventArgs:

// Hiding the non-compliant event argument: 

public delegate void MyEventHandler(

object sender, EventArgs args );

public event MyEventHandler OnStuffHappens;

// Code to raise Event:

BadEventArgs arg = new BadEventArgs(); 

arg.ErrorCode = 24;

// Interface is legal, runtime type is not: 

OnStuffHappens(this, arg);

The interface declaration, which uses an EventArgs argument, is CLS com-
pliant. However, the actual type you substituted in the event arguments 
was not. The end result is a type that some languages cannot use. Devel-
opers trying to use those types will not be able to call the methods in your 
assembly. Their language may even hide the visibility of those APIs. Or, 
they may show that the APIs exist but not provide a way to access them.

This discussion of CLS compliance ends with how CLS-compliant classes 
implement compliant or noncompliant interfaces. It can get complicated, 
but we’ll simplify it. Understanding CLS compliance with interfaces also 
will help you fully understand what it means to be CLS compliant and 
how the environment views compliance.
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This interface is CLS compliant if it is declared in a CLS-compliant assembly:

[assembly: CLSCompliant(true)] 

public interface IFoo 

{

void DoStuff(Int32 arg1, string arg2); 

}

You can implement that interface in any CLS-compliant class. However, if 
you declare this interface in an assembly that is not marked as CLS com-
pliant, the IFoo interface is not CLS compliant. In other words, an inter-
face is CLS compliant only if it is defined in a CLS-compliant assembly; 
conforming to the CLS spec is not enough. The reason is compiler per-
formance. The compilers check CLS compliance on types only when the 
assembly being compiled is marked as CLS compliant. Similarly, the com-
pilers assume that types declared in assemblies that are not CLS compli-
ant actually are not CLS compliant. However, the members of this interface 
have CLS-compliant signatures. Even if IFoo is not marked as CLS com-
pliant, you can implement IFoo in a CLS-compliant class. Clients of this 
class could access DoStuff through the class reference, but not through the 
IFoo reference.

Consider this small variation:

public interface IFoo2 

{

// Non-CLS compliant, Unsigned int 

void DoStuff(UInt32 arg1, string arg2);

}

A class that publicly implements IFoo2 is not CLS compliant. To make a 
CLS-compliant class that implements IFoo2, you must use explicit inter-
face implementation:

public class MyClass2 : IFoo2 

{

// explicit interface implementation. 

// DoStuff() is not part of MyClass's public interface 

void IFoo2.DoStuff(UInt32 arg1, string arg2) 

{

// content elided. 

}

}
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MyClass has a CLS-compliant public interface. Clients expecting the IFoo2 
interface must access it through the non-CLS-compliant IFoo2 pointer.

Complicated? No, not really. Creating a CLS-compliant type mandates that 
your public interfaces contain only CLS-compliant types. It means that 
your base class must be CLS compliant. All interfaces that you implement 
publicly must be CLS compliant. If you implement a non-CLS compliant 
interface, you must hide it from your public interface using explicit inter-
face implementation.

CLS compliance does not force you to adopt a least common denomina-
tor approach to your designs and implementations. It means carefully 
watching the publicly accessible interfaces of your assembly. For any pub-
lic or protected class, any type mentioned in these constructs must be CLS 
compliant:

■ Base classes
■ Return values for public and protected methods and properties
■ Parameters for public and protected methods and indexers
■ Runtime event arguments
■ Public interfaces, declared or implemented

The compiler tries to enforce a compliant assembly. That makes it easy for 
you to provide some minimum level of CLS support. With a bit of extra 
care, you can create an assembly that anyone using any language can use. 
The CLS specification tries to ensure that language interoperability is pos-
sible without sacrificing the constructs in your favorite language. You just 
need to provide alternatives in the interface.

CLS compliance requires you to spend a little time thinking about the pub-
lic interfaces from the standpoint of other languages. You don’t need to 
restrict all your code to CLS-compliant constructs; just avoid the non-
compliant constructs in the interface. The payback of interlanguage oper-
ability is worth the extra time.

Item 50: Prefer Smaller, Cohesive Assemblies

This item should really be titled “Build Assemblies That Are the Right Size 
and Contain a Small Number of Public Types.” But that’s too wordy, so I 
titled it based on the most common mistake I see: developers putting 
everything but the kitchen sink in one assembly. That makes it hard to
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reuse components and harder to update parts of a system. Many smaller 
assemblies make it easier to use your classes as binary components.

The title also highlights the importance of cohesion. Cohesion is the 
degree to which the responsibilities of a single component form a mean-
ingful unit. Cohesive components can be described in a single simple sen-
tence. You can see this in many of the .NET FCL assemblies. Two examples 
are: The System.Core assembly provides types and algorithms that sup-
port LINQ, and the System.Windows.Forms assembly provides classes that 
model Windows controls. Web Forms and Windows Forms are in different 
assemblies because they are not related. You should be able to describe your 
own assemblies in the same fashion using one simple sentence. No cheat-
ing: The MyApplication assembly provides everything you need. Yes, that’s 
a single sentence. But it’s also lazy, and you probably don’t need all of that 
functionality in My2ndApplication. (Though you’d probably like to reuse 
some of it. That “some of it” should be packaged in its own assembly.)

You should not create assemblies with only one public class. You do need 
to find the middle ground. If you go too far and create too many assem-
blies, you lose some benefits of encapsulation: You lose the benefits of 
internal types by not packaging related public classes in the same assem-
bly. The JIT compiler can perform more efficient inlining inside an assem-
bly than across assembly boundaries. This means that packaging related 
types in the same assembly is to your advantage. Your goal is to create the 
best-sized package for the functionality you are delivering in your com-
ponent. This goal is easier to achieve with cohesive components: Each 
component should have one responsibility.

In some sense, an assembly is the binary equivalent of class. We use classes 
to encapsulate algorithms and data storage. Only the public classes, structs, 
and interfaces are part of the official contract, so only the public types are 
visible to users. (Remember that interfaces cannot be declared protected.) 
In the same sense, assemblies provide a binary package for a related set of 
classes. Only public and protected classes are visible outside an assembly. 
Utility classes can be internal to the assembly. Yes, they are more visible 
than private nested classes, but you have a mechanism to share a common 
implementation inside that assembly without exposing that implementa-
tion to all users of your classes. Partitioning your application into multi-
ple assemblies encapsulates related types in a single package.

Splitting functionality into assemblies implies having more code than you 
would have in a short essay like an Effective Item. Rather than write an
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entire new application, I’ll discuss a variety of enhancements to the 
dynamic CSV class from Item 44. You need to determine if the new fea-
tures belong with the core capabilities you’ve already delivered, or if it’s an 
option that a smaller set of your users will appreciate. The version I created 
returns all data in the CSV file as strings. You could create adapters that 
would convert the strings to numeric values when the column supported 
it. That would probably be something that most users would want. Those 
adapters should be in the same assembly. Another addition might be sup-
porting more than one level of headers. That would enable nested head-
ers, like Excel pivot tables. That feels like something you’d put into a 
different assembly. Only some of your users would use that feature. The 
most common usage would be the version containing the single headers. 
That means it makes the most sense to put the multiple header function-
ality in a different assembly. It may depend on the core assembly, but it 
should not be in the same location.

What about internationalization? That one doesn’t have a simple answer. 
You may be creating applications for multinational enterprises, and mul-
tiple language support is critical for everyone. Or, you may be writing a 
simple utility for local soccer leagues. Or, your expected audience could 
be anywhere in between. If most of your users will be in one language, 
whatever that might be, separating multiple languages into a separate 
assembly (or even one assembly per language) might make sense. On the 
other hand, if your user base will often need to use CSV files in a variety 
of languages, multiple languages should be part of the core functionality. 
You need to decide if this new functionality is going to be useful to an 
overwhelming majority of users for your core functionality. If it is, then 
you should add the new functionality to the same assembly. On the other 
hand, if this new functionality is expected to be used only in some of the 
more complicated examples, then you should separate that functionality 
into a separate deliverable unit.

Second, using multiple assemblies makes a number of different deploy-
ment options easier. Consider a three-tiered application, in which part of 
the application runs as a smart client and part of the application runs on 
the server. You supply some validation rules on the client so that users get 
feedback as they enter or edit data. You replicate those rules on the server 
and combine them with other rules to provide more robust validation. 
The complete set of business rules is implemented at the server, and only 
a subset is maintained at each client.
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Sure, you could reuse the source code and create different assemblies for 
the client and server-side business rules, but that would complicate your 
delivery mechanism. That leaves you with two builds and two installations 
to perform when you update the rules. Instead, separate the client-side 
validation from the more robust server-side validation by placing them in 
different assemblies. You are reusing binary objects, packaged in assem-
blies, rather than reusing object code or source code by compiling those 
objects into the multiple assemblies.

An assembly should contain an organized library of related functionality. 
That’s an easy platitude, but it’s much harder to implement in practice. 
The reality is that you might not know beforehand which classes will be 
distributed to both the server and client portions of a distributed applica-
tion. Even more likely, the set of server- and client-side functionality will 
be somewhat fluid; you’ll move features between the two locations. By 
keeping the assemblies small, you’ll be more likely to redeploy more eas-
ily on both client and server. The assembly is a binary building block for 
your application. That makes it easier to plug a new component into place 
in a working application. If you make a mistake, make too many smaller 
assemblies rather than too few large ones.

I often use Legos as an analogy for assemblies and binary components. 
You can pull out one Lego and replace it easily; it’s a small block. In the 
same way, you should be able to pull out one assembly and replace it with 
another assembly that has the same interfaces. The rest of the application 
should continue as if nothing happened. Follow the Lego analogy a little 
farther. If all your parameters and return values are interfaces, any assem-
bly can be replaced by another that implements the same interfaces (see 
Item 22).

Smaller assemblies also let you amortize the cost of application startup. 
The larger an assembly is, the more work the CPU does to load the assem-
bly and convert the necessary IL into machine instructions. Only the rou-
tines called at startup are JITed, but the entire assembly gets loaded and the 
CLR creates stubs for every method in the assembly.

Time to take a break and make sure we don’t go to extremes. This item is 
about making sure that you don’t create single monolithic programs, but 
that you build systems of binary, reusable components. You can take this 
advice too far. Some costs are associated with a large program built on too 
many small assemblies. You will incur a performance penalty when pro-
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gram flow crosses assembly boundaries. The CLR loader has a little more 
work to do to load many assemblies and turn IL into machine instruc-
tions, particularly resolving function addresses.

Extra security checks also are done across assembly boundaries. All code 
from the same assembly has the same level of trust (not necessarily the 
same access rights, but the same trust level). The CLR performs some secu-
rity checks whenever code flow crosses an assembly boundary. The fewer 
times your program flow crosses assembly boundaries, the more efficient 
it will be.

None of these performance concerns should dissuade you from breaking 
up assemblies that are too large. The performance penalties are minor. C# 
and .NET were designed with components in mind, and the greater flexi-
bility is usually worth the price.

So how do you decide how much code or how many classes go in one 
assembly? More important, how do you decide which code goes in an 
assembly? It depends greatly on the specific application, so there is not one 
answer. Here’s my recommendation: Start by looking at all your public 
classes. Combine public classes with common base classes into assemblies. 
Then add the utility classes necessary to provide all the functionality asso-
ciated with the public classes in that same assembly. Package related pub-
lic interfaces into their own assemblies. As a final step, look for classes that 
are used horizontally across your application. Those are candidates for a 
broad-based utility assembly that contains your application’s utility 
library.

The end result is that you create a component with a single related set of 
public classes and the utility classes necessary to support it. You create an 
assembly that is small enough to get the benefits of easy updates and eas-
ier reuse, while still minimizing the costs associated with multiple assem-
blies. Well-designed, cohesive components can be described in one simple 
sentence. For example, “Common.Storage.dll manages the offline data cache 
and all user settings” describes a component with low cohesion. Instead, 
make two components: “Common.Data.dll manages the offline data cache. 
Common.Settings.dll manages user settings.” When you’ve split those up, 
you might need a third component: “Common.EncryptedStorage.dll 
manages file system IO for encrypted local storage.” You can update any 
of those three components independently.
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Small is a relative term. mscorlib.dll is roughly 2MB; System.Web 
.RegularExpressions.dll is merely 56KB. But both satisfy the core design 
goal of a small, reusable assembly: They contain a related set of classes and 
interfaces. The difference in absolute size has to do with the difference in 
functionality: mscorlib.dll contains all the low-level classes you need in 
every application. System.Web.RegularExpressions.dll is very specific; it 
contains only those classes needed to support regular expressions in Web 
controls. You will create both kinds of components: small, focused assem-
blies for one specific feature and larger, broad-based assemblies that con-
tain common functionality. In either case, make them as small as is 
reasonable but no smaller.
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using interfaces to define, 135 
using optional parameters to

minimize method overloads, 61–62 

APM (Asynchronous Programming
Model), 219 

Application programming interfaces 
(APIs). See APIs (application 
programming interfaces)

Application-specific exception classes, 
279–284

Arrays
creating immutable value types, 

121–122
generating with query syntax, 52 
support for covariance, 172–173

as

preferring to casts, 12–20 
using with IDisposable, 90

AsParallel(), 203–209, 216 

Assemblies
building small cohesive, 303–308 
CLS-compliant, 298–303 
compile-time vs. runtime constants

in, 9–10 
security, 296–297

Asserts, 23–24 

Assignment statements vs. member
initializers, 74–77 

Asynchronous downloading
handling exceptions, 220–222 
with PLINQ, 217

Asynchronous Programming Model 
(APM), 219

Atomic value types, 114–123 

Attributes
CLSCompliant, 299
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Serializable and Nonserializable, 
158–166

using Conditional instead of #if,
20–28 

Austern, Matt, 285 

Automatic properties and
serialization, 164–165

B
Backing stores, 4 

Bandwidth, 171

base(), 85 

Base Class Library (BCL). See BCL
(Base Class Library)

Base classes
avoiding overloading methods 

defined in, 198–203
CLS-compliance, 303 
defining and implementing

interfaces vs. inheritance, 129–138 
disposing of derived classes, 100–102 
implementing ICloneable, 193–194 
interface methods vs. virtual

methods, 139–143 
overriding Equals(), 43 
serialization, 163–165 
using DynamicObject as, 246 
using new only to react to updates,

194–198 
using overrides instead of event

handlers, 179–183 

BCL (Base Class Library)
casts, 19–20 
ForAll implementation, 52–53 
IFormattable.ToString(), 33 
.NET Framework and, 179 
overriding ToString(), 30
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Behavior
defining with reference types, 

104–110
described through interfaces, 129 

Best practices for exception handling,
284–294 

Binary compatibility
of properties and accessible data 

members, 6–7
of read-only constant, 10 

Binary operators, 245–246 

Binary serialization, 159, 166 

BindGetMember, 253–254 

Binding data. See Data binding 

BindingList, 155–156 

BindSetMember, 251–252 

Blocks
constructing parallel algorithms with 

exceptions in mind, 224–225
using Conditional attribute instead 

of #if/#endif, 20–28
using try/finally for resource

cleanup, 87–94 

Boxing operations, 275–279 

Brushes class, 96 

Buffering options in PLINQ, 214–215

C
C++, 105 

C# dynamic programming. See
Dynamic programming in C# 

C# language idioms
avoiding conversion operators in 

APIs, 56–60
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Conditional attribute instead of #if,
20–28 

design expression. See design
expression 

optional parameters for minimizing
method overloads, 60–64 

pitfalls of GetHashCode(), 44–51 
preferring is or as operators to

casts, 12–20 
providing ToString(), 28–36 
query syntax vs. loops, 51–56
readonly vs. const, 8–12 
understanding equality and

relationships, 36–44 
understanding small functions, 

64–68 
using properties instead of accessible

data members, 1–7 

Callback expression with delegates,
143–146 

CallInterface(), 255–257 

Cargill, Tom, 285 

CAS (code access security), 295 

Casts
conversion operations and, 59–60 
in dynamic programming, 229 
overload resolution and, 201–203 
preferring is or as operators to,

12–20 

Cast<T>()
converting elements in sequence 

with, 19–20
in dynamic programming, 236–239 

Catching exceptions
with casts, 13 
creating exception classes, 279–283 
strong exception guarantee, 284–294
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Chaining constructors, 82–83 

CheckState(), 22–26 

Chunk partitioning, 205 

Circular references, 69 

Classes
assemblies and, 304 
avoiding returning references to

internal objects, 154–157 
base. See Base classes 
creating application-specific

exception, 279–284 
derived. See Derived classes 
initialization for static members, 

77–79 
limiting visibility of types, 126–129 
providing ToString(), 28–36 
substitutability, 56–60 
understanding equality and

relationships, 36–44 
vs. structs, 104–110

Cleaning up resources, 87–94 

Clients
building cohesive assemblies for, 

305–306
creating internet service APIs, 

166–171
notifying with Event Pattern, 

146–154

Close()
avoiding ICloneable, 191–194 
vs. Dispose(), 93–94

CLR (Common Language Runtime)
building cohesive assemblies, 306– 

307
calling static constructors, 78–79 
CLS-compliant assemblies, 298
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security restrictions, 295–296 
strong exception guarantee, 285

CLS (Common Language 
Specification), 127 

CLS-compliant assemblies, 298–303 

Code
conventions, xv–xvi 
idioms. See C# language idioms 
safety, 294–298

Code access security (CAS), 295 

Cohesion, 304 

Collections
event handler, 152–153 
hash-based, 115 
limiting visibility of types, 126–127 
pitfalls of GetHashCode(), 44–51 
support for covariance, 173 
wrapping, 157

Colvin, Greg, 285 

COM methods, 61–62 

Common Language Specification
(CLS), 127 

Communication
improving with expression API, 

255–257
with large-grain internet service

APIs, 166–171 

Compacting garbage, 70 

CompareTo(), 183–190 

Comparisons
implementing ordering relations 

with IComparable<T> and 
IComparer<T>, 183–190

understanding equality and 
relationships, 36–44
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Compatibility of properties vs. 
accessible data members, 6–7

Compilation
compile-time constants vs. runtime 

constants, 8–12 
conditional, 20–28 
default ToString(), 30 
minimizing boxing and unboxing,

275–279 
preferring is or as operators to

casts, 15 
pros and cons of dynamic

programming, 227–236 
understanding small functions, 

64–68 

Conditional attributes, 20–28

const vs. readonly, 8–12

Constants
immutable atomic value types, 

114–123
preferring readonly to const, 8–12
using constructor initializers, 85–86 

Constraints
constructors for new(), 81–82
GetHashCode(), 48–51 
getting around with dynamic

invocation, 227–228 

Constructors
defining copy, 193–194 
dynamic invocation, 245–246 
exception class, 282–283 
minimizing duplicate initialization

logic, 79–87 
serialization, 161–162 
static, 77 
syncing with member variables, 74–77 
using instead of conversion

operators, 57
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Containers
hash-based, 44–51 
minimizing boxing and unboxing,

275–279 

ContinueWith(), 217, 219 

Contracts in interface methods, 
140–143 

Contravariance
overload resolution and, 202 
supporting generic, 171–177

Controls, GC, 69–74 

Conversion operators
avoiding in APIs, 56–60 
in dynamic programming, 229 
leveraging runtime type of generic

type parameters, 236–239 
minimizing boxing and unboxing,

275–279 
preferring is or as to casts, 

12–20 

Convert<T>, 239 

Copying
avoiding ICloneable, 190–194 
defensive, 286–287 
minimizing boxing and unboxing,

275–279 

Cost avoidance with small 
functions, 66 

Covariance
overload resolution and, 202 
supporting generic, 171–177

CSV data
in cohesive assemblies, 305 
minimizing dynamic objects in

public APIs, 270–273 

Custom formatting of human-
readable output, 33–35
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D
Data binding

with properties instead of data 
members, 2

support for, 7
transforming late binding to early

binding with expressions, 261–267 

Data-drive types, 243–254 

Data fields, 5, 7 

Data members
implementation for interfaces, 

130–131
properties instead of, 1–7 
serialization, 157–166

Data storage
isolated, 296–297 
with value types, 104–110

Debug builds, 20–28 

DEBUG environment variable, 24–28 

Debug.Assert, 23–24 

Declarative syntax, 51–56 

Deep copies, 190–191 

Default constructors, 74–75 

Default initialization, 87 

Default parameters
for minimizing duplicate 

initialization logic, 80–82
naming parameters, 63–64 
vs. overloads, 86

Delegates
covariance and contravariance, 

175–177
expressing callbacks with, 143–146 
implementing Event Pattern for

notifications, 146–154 
no-throw guarantee, 294
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Derived classes
avoiding ICloneable, 190–194 
avoiding overloading methods

defined in base classes, 198–203 
disposal, 100–102 
implementation for interfaces, 

130–131 
interface methods vs. virtual

methods, 139–143 
serialization, 164–165 
using overrides instead of event

handlers, 179–182 

Deserialization, 160 

Design expression
avoiding returning references to 

internal class objects, 154–157
expressing callbacks with delegates, 

143–146
generic covariance and 

contravariance support, 171–177
implementing Event Pattern for 

notifications, 146–154
interface methods vs. virtual 

methods, 139–143
interfaces vs. inheritance, 129–138 
large-grain internet service APIs,

166–171 
limiting visibility of types, 126–129 
making types serializable, 157–166 
overview, 125

Design Patterns (Gamma, et al.), 
146, 240

Diagnostics messages, 24 

Dictionary class, 152–153 

Dictionary, dynamic, 250–254 

Dispose()
implementing standard dispose 

pattern, 98–104
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no-throw guarantee, 293–294 
releasing resources with, 87–94

DownloadData(), 216 

Downloading, 215–220 

Duck typing, 228 

Duplicate initialization logic, 79–87 

Dynamic programming in C#
DynamicObject or 

IDynamicMetaObjectProvider 
for data-driven dynamic types, 
243–254

leveraging runtime type of generic 
type parameters, 236–239

making use of expression API, 
254–261

minimizing dynamic objects in 
public APIs, 267–273

for parameters that receive 
anonymous types, 239–243

pros and cons, 227–236 
transforming late binding to early

binding with expressions, 261–267 

DynamicDictionary, 250–254 

DynamicObject, 243–254

E
EAP (Event-based Asynchronous

Pattern), 219 

Early binding, 261–267

#endif, 20–28 

Enregistration, 66 

EntitySet class, 69–70 

Enumerable.Cast<T>(), 19–20 

Enumerator<T>, 126–127

enums, 110–114
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Envelope-letter pattern, 288–293 

Environment variables, 24–28 

Equality
ordering relations and, 190 
requirements of GetHashCode(), 

45–46 
understanding relationships and, 

36–44 

Equals(), 36–44 

Errors
with conversion operators, 56–57 
creating exception classes, 279–284 
recovery code, xv

Event arguments, 301 

Event-based Asynchronous Pattern
(EAP), 219 

EventHandlerList, 152–153 

Events
expressing callbacks with delegates, 

144–146
handlers vs. overrides, 179–183
implementing pattern for

notifications, 146–154 

Exception translation, 284 

Exceptional C++ (Sutter), 285 

Exceptions
array covariance, 173 
catching with static constructors, 79 
constructing parallel algorithms with

these in mind, 220–225 
creating application-specific classes,

279–284 
Equals() and, 40 
handling with initialization, 77 
InvalidCastException, 237 
InvalidOperationException, 233 
issues with delegate invocation, 145
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Exceptions (continued)
strong guarantee, 284–294 
using is to remove, 17

Explicit conversion operators, 57, 
59–60

Explicit properties, 119–120 

Expressing designs in C#. See design
expression 

Expression trees
in dynamic programming, 230–231 
handling dynamic invocation, 

251–254 
making use of, 254–261

Expressions
making use of API, 254–261 
transforming late binding to early

binding with, 261–267 
vs. dynamic, 230–235

Extensions
of anonymous types, 243 
member implementation for

interfaces, 130 
ParallelEnumerable, 214 
property, 4 
using expressions to create, 262–267

F
Feedback, 143–146 

Fields, data, 5, 7 

File system security, 296–297 

Finalizers
for disposing of nonmemory 

resources, 98–104
in GC, 71–74 
no-throw guarantee, 293–294

finally, 285

316 ❘ Index

Find(), 144–145 

FinishDownload(), 217–218 

Flags enumerations, 113–114 

Flexibility
with event handling, 182 
of runtime constants, 8

Flow control with exceptions, 17 

ForAll, 52–53

foreach, 18–19 

Formatting human-readable output,
31–33 

Func<>, 144 

Functions. See also Methods
pitfalls of GetHashCode(), 44–51 
understanding equality and

relationships, 36–44 
understanding small, 64–68

G
Gamma, Erich, 146, 240 

GC (Garbage Collector)
avoiding unnecessary object 

creation, 94 
defined, 69–74 
finalization and, 99

Generations of objects, 73 

Generic covariance and
contravariance, 171–177 

Get accessors, 4–5 

GetFormat(), 35 

GetHashCode(), 44–51 

GetMetaObject(), 250–254 

GetObjectData(), 161–163, 166 

GetType(), 19
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H
Hash Partitioning, 206 

Hash values, 44–51 

Heap objects, 94 

Helm, Richard, 146, 240 

Hierarchies
avoiding conversion operators in

APIs, 56–60 
creating exception, 279 
defining and implementing

interfaces vs. inheritance, 129–138 
implementing ICloneable, 193–194

Human-readable output, 28–36

I
I/O bound operations

isolated storage, 296–297 
using PLINQ for, 215–220

IBindingList, 155–156 

ICloneable, 190–194 

IComparable<T>, 183–190 

IComparer<T>, 183–190 

ICustomFormatter, 33–35 

IDeserializationCallback, 160 

Idioms. See C# language idioms 

IDisposable
disposing of nonmemory resources, 

99–104
resource management with, 71, 74
strong exception guarantee, 285
using and try/finally for

resource cleanup, 87–94 

IDynamicMetaObjectProvider, 
243–254

Index ❘ 317

IEnumerable, 18–20 

IEnumerable<T>
extension methods, 131–134 
ForAll implementation, 52–53 
limiting visibility of types, 126–127

IEquatable<T>, 36, 39–44

#if, 20–28 

IFormatProvider, 33–35 

IFormattable.ToString(), 28, 31–35 

Immutable types
avoiding unnecessary object 

creation, 97–98
immutable atomic value types, 

114–123
protecting from modification, 155 
using with GetHashCode(), 48–51

Imperative syntax vs. declarative 
syntax, 51–56

Implementation
interface vs. abstract base class, 

129–138
interface vs. virtual method, 139–143 
of ordering relations with

IComparable<T> and 
IComparer<T>, 183–190

PLINQ of parallel algorithms, 
203–215

Implicit conversions
minimizing boxing and unboxing, 

277
operators, 57–60 

Implicit properties
creating immutable value types, 

119–120
initialization, 76 
syntax, 4

in, 175–177
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Indexers
dynamic invocation, 245–246 
properties as, 5–6

Inheritance
array covariance and, 173 
interface methods vs. virtual

methods, 139–143
new modifier and, 194–198 
vs. defining and implementing

interfaces, 129–138 

Initialization
ensuring 0 is valid state for value 

types, 110–114
immutable atomic value type, 

114–123
member initializers vs. assignment 

statements, 74–77
minimizing duplicate logic, 79–87 
of nonserializable members, 

159–160 
for static class members, 77–79

Inlining, 66 

InnerException, 220–223, 283–284 

INotifyPropertyChanged, 262–267 

INotifyPropertyChanging, 262–267 

Instances
construction, 87
distinguishing between value types

and reference types, 104–110 
invariants, 45, 48–51

int, 158 

Interfaces. See also APIs (application
programming interfaces)

avoiding ICloneable, 190–194 
CLS-compliance, 298–303 
creating large-grain internet service

APIs, 166–171
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defining and implementing vs. 
inheritance, 129–138

how methods differ from virtual 
methods, 139–143

IDynamicMetaObjectProvider, 
243–254

implementing ordering relations 
with IComparable<T> and 
IComparer<T>, 183–190

limiting visibility of types with, 
126–129

minimizing dynamic objects in 
public APIs, 267–273

protecting read-only properties from 
modification, 155–156

supporting generic covariance and 
contravariance, 171–177

transforming late binding to early 
binding with expressions, 262–267

vs. dynamic programming, 235–236 

Internal classes
avoiding returning references to 

objects, 154–157
creating to limit visibility, 126–129 

Internal state, 114–123 

Internationalization, 305 

Internet services, 166–171 

InvalidCastException, 18, 237 

InvalidOperationException, 233 

Invariants
requirements of GetHashCode(), 

48–51
supporting generic covariance and 

contravariance, 172

Inverted Enumeration, 207–208 

IParallelEnumerable, 204–205

is, 12–20
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ISerializable, 160–166 

Isolated storage, 296–297 

IStructuralEquality, 36, 44

J
Java, 105 

JIT (Just-In-Time) compiler
small functions, 64–68 
using Conditional attribute, 25

Johnson, Ralph, 146, 240

K
Key/value pairs, 162–163 

Keys, 44–51 

Keywords, 55–56

L
Labeling, 74 

Lambda expressions
dynamic programming and, 

229–231
expressing callbacks with delegates, 

144–145
making use of expression API, 

256–261

Language idioms. See C# language 
idioms

Large-grain internet service APIs, 
166–171

Late binding, 261–267 

Library functions, 22–28
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LINQ
constructing parallel algorithms with 

exceptions in mind, 224–225
expressing callbacks with delegates, 

144–145
to XML, 244–245 

LINQ queries
building small functions, 67 
interface extension methods, 

133–134 
PLINQ implementation of parallel

algorithms, 203–215 

LINQ to Objects, 208–214 

Listener notification, 147–154 

List.ForEach(), 144–145 

List<T>, 52–53 

Local variables, 95–98 

Log event handlers, 148 

Logging events, 147–152 

Loops
preferring query syntax to, 51–56 
strong exception guarantee, 286–287 
using casts with foreach, 18–19

M
Managing resources. See .NET 

resource management

Mathematical properties of equality, 
38

Member initializers, 74–77 

Member variables
initialization for static, 77–79 
promoting local variables to, 95–98 
syncing with constructors, 74–77
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Members, data. See Data members 

Memory
management with GC, 69–74 
security, 295–296

MemoryMonitor, 264 

Metaprogramming, 250–254 

+= method, 97 

Method call syntax, 51–52 

Methods
avoiding overloading those defined 

in base classes, 198–203
Clone(), 191–194 
CompareTo(), 183–190 
conditional compilation, 22–28 
constructing parallel algorithms with

exceptions in mind, 220–225 
declaring constants inside, 8 
defining and implementing

interfaces vs. inheritance, 129–138 
Dispose(), 87–94 
Enumerable.Cast<T>(), 19–20 
GetType(), 19 
inlining, 66 
interface vs. virtual, 139–143 
optional parameters for minimizing

overloads, 60–64 
pitfalls of GetHashCode(), 44–51 
PLINQ implementation of parallel

algorithms, 203–215 
properties vs. accessible data

members, 1–7 
pros and cons of dynamic

programming, 227–236 
providing ToString(), 28–36 
serialization, 160–166 
standard dispose pattern, 99 
strong exception guarantee, 284–294 
that use callbacks, 144–146
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understanding equality and 
relationships, 36–44

using PLINQ for I/O bound 
operations, 215–220

Meyers, Scott, 285 

Microsoft Intermediate Language
(MSIL), 6 

MoveNext(), 209–213 

MSIL (Microsoft Intermediate
Language), 6 

Multi-dimensional indexers, 5–6 

Multicast delegates, 145–146 

Multithreading
immutable atomic value types and, 

117
for properties, 3 
raising events safely, 148 
using PLINQ for I/O bound

operations, 215–220

N
Named parameters, 60–64 

Naming
avoiding overloading methods 

defined in base classes, 198–203
declaring indexers, 6 
exception classes, 281–282 
parameters, 63–64

Nested loops vs. query syntax, 53 

.NET Event Pattern
., 146–154 

.NET Framework
avoiding ICloneable, 190–194 
avoiding overloading methods

defined in base classes, 198–203
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CLS-compliant assemblies, 298–303 
constructing parallel algorithms with

exceptions in mind, 220–225 
extension methods, 130 
implementing ordering relations

with IComparable<T> and 
IComparer<T>, 183–190

minimizing boxing and unboxing, 
275–279

overrides vs. event handlers, 179–183 
PLINQ implementation of parallel

algorithms, 203–215 
properties and, 2 
security, 294–298 
understanding small functions, 

64–68 
using new only to react to base class

updates, 194–198 
using PLINQ for I/O bound

operations, 215–220 

.NET Framework Library
debugging capabilities, 22–28 
delegate forms, 144 
public interfaces with private classes,

126–127 

.NET resource management
avoiding unnecessary objects, 94–98 
distinguishing between value types

and reference types, 104–110 
ensuring that 0 is valid state for value

types, 110–114 
immutable atomic value types, 

114–123 
implementing standard dispose

pattern, 98–104 
member initializers vs. assignment

statements, 74–77 
minimizing duplicate initialization

logic, 79–87 
overview, 69–74
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proper initialization for static class 
members, 77–79

using and try/finally for
resource cleanup, 87–94 

.NET Serialization Framework, 
158–166

new

creating explicit parameterless 
constructor, 81–82

using only to react to base class 
updates, 194–198

using with compile-time constants, 9 

No-throw guarantee, 293–294 

NonSerializable attribute, 159–160 

Notifications, Event Pattern for, 
146–154

null

checking with casts, 13 
references in value types, 113–114

null (0)
ensuring valid state for value types, 

110–114
initialization of nonserializable 

members, 159–160 
initializing object to, 75 

Number types, 8–9

O
Object.Equals(), 37–39 

Object.GetHashCode(), 45–46, 47 

Object.ReferenceEquals(), 37 

Objects
avoiding returning references to 

internal class, 154–157
avoiding unnecessary, 94–98 
creating event, 150–152
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Objects (continued)
disposal with using and
try/finally, 87–94 

expressing callbacks with delegates,
144–146 

GetType(), 19 
minimizing dynamic in public APIs,

267–273 
pros and cons of dynamic, 227–236 
standard dispose pattern, 98–104 
transferring between client and

server, 166–171 
using DynamicObject or

IDynamicMetaObjectProvider for 
data-driven dynamic types, 243–254

Observer Pattern, 146, 153 

Office APIs, 61–62 

OnDeserialization, 160 

Operators
==(), 44 
avoiding conversion in APIs, 56–60 
CLS-compliance, 300 
conversion. See Conversion operators 
hash value equality, 45–46 
preferring is or as to casts, 12–20

Optional parameters
overload resolution and, 201 
using to minimize method

overloads, 60–64 

Order of operations, 87 

Ordering relations, 183–190

out, 175–177 

Overloads
avoiding overloading methods 

defined in base classes, 198–203
CLS-compliance, 300 
optional parameters for minimizing,

60–64
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vs. default parameters, 81–82, 86
when implementing IComparable,

185 

Overrides
Equals(), 38–44 
GetHashCode(), 48–51 
ToString(), 28–36 
virtual functions vs. interface

methods, 139–143 
vs. event handlers, 179–183 
vs. overloads, 199

P
Parallel algorithms

constructing with exceptions in 
mind, 203–215

PLINQ implementation of, 203–215 

Parallel Task Library
constructing parallel algorithms with 

exceptions in mind, 220–225
using PLINQ for I/O bound 

operations, 215–220

ParallelEnumerable, 214–215 

Parallel.ForEach(), 216 

Parameters
CLS-compliance, 299 
cons of dynamic programming, 

231–232 
covariance and contravariance, 

171–172, 175–176 
declaring indexers, 5–6 
dynamic for those that receive

anonymous types, 239–243 
dynamic to leverage runtime type of

generic type, 236–239 
exception, 283 
as expressions, 255–256
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IFormattable.ToString(), 33 
interfaces as, 134–135 
for minimizing duplicate

initialization logic, 80–82 
optional for minimizing method

overloads, 60–64 
overload resolution and, 199–202 
using none with Conditional

attribute, 27–28 

Partitioning
assemblies, 304 
parallel queries, 205–206

Performance
avoiding unnecessary object 

creation, 94–98
building cohesive assemblies, 306–307
compile-time vs. runtime constants,

8, 12 
costs of dynamic programming, 235 
finalizers and, 72–73 
implementing ordering relations

with IComparable<T> and 
IComparer<T>, 183–190

minimizing boxing and unboxing, 
275–279

properties vs. accessible data 
members, 7

query syntax vs. looping, 56 
understanding small functions, 64–68

Permissions, security, 163 

Persistence through type serialization,
157–166 

Pipelining, 206 

PLINQ
constructing parallel algorithms with 

exceptions in mind, 224–225
implementation of parallel 

algorithms, 203–215
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using for I/O bound operations, 
215–220

Predicate<T>, 144 

Preprocessors, 20–28 

Primitive types, 8–9 

Private data members, 7 

Private types, 126–129 

ProcessArgument(), 256–257 

Processing while disposing, 103 

Professional development, xiv 

Programming, dynamic. See Dynamic
programming in C# 

Properties
in anonymous types, 241 
avoiding returning references to

internal class objects, 154–157 
event, 149 
factoring into interface, 137 
implementing dynamic property

bag, 244–245 
instead of accessible data members,

1–7 
limiting exposure with interfaces,

135 
serialization, 164–165 
transforming late binding to early

binding with expressions, 261–267 

Property accessors
defined, 4–5, 7 
inlining, 66–67

Protected interfaces, 299–300 

Protection, 294–298 

Public interfaces
CLS-compliance, 299–303 
limiting visibility of types in, 

126–129
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Public interfaces (continued)
minimizing dynamic objects in 

public APIs, 267–273 
when defining APIs, 135 

Public types, 126–129

Q
Queries

building small functions, 67 
interface extension methods, 133–134 
PLINQ implementation of parallel

algorithms, 203–215 
syntax preferring to loops, 51–56

R
Range partitioning, 205 

Read-only constants, 85–86 

Read-only properties, 154–157 

Readability with query syntax, 51–56

readonly vs. const, 8–12 

Recovery with application-specific
exception classes, 281–284 

Reference types
avoiding ICloneable, 190–193 
creating immutable value types, 

121–122 
distinguishing between value types

and, 104–110 
expressing equality, 36–44
foreach support with casts, 18 
minimizing boxing and unboxing,

275–279 
pitfalls of GetHashCode(), 44–51 
promoting to member variables, 

95–96
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using with Conditional attribute, 
27–28

References
avoiding returning to internal class 

objects, 154–157
raising events safely, 148 
in value types, 113

Reflection, 23 

Reflexive property of equality, 38 

Region directives, xvi 

Relationships
implementing ordering relations 

with IComparable<T> and 
IComparer<T>, 183–190

understanding equality and, 36–44 

Release builds, 20–28 

Releasing resources, 87–94 

Remote communications, 166–171 

Repetition with dynamic
programming, 229–231 

ReportAggregateError, 221 

Requirements of GetHashCode(), 
45–51 

Resource cleanup, 87–94 

Resource management. See .NET
resource management 

Responsibilities, 105–110 

Resurrected objects, 103–104 

Return values
CLS-compliance, 299 
in dynamic programming, 228 
issues with delegate invocation, 

145–146 
using interfaces as, 134–135 
using void with Conditional

attribute, 27
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Reusable code, 130, 134–135 

Rights, security, 294–298 

Role-based security, 295 

RunAsync
asynchronous downloading, 217 
handling exceptions in, 220–222

Runtime constants vs. compile-time 
constants, 8–12

Runtime type checking, 12

S
SafeUpdate method, 293 

Scope, 127–129 

Searching containers, 45 

Security
building cohesive assemblies, 307 
overview, 294–298 
permissions, 163

Sequence element conversion, 19–20 

Serializable attribute, 158–166 

Serialization
creating APIs based on, 167 
exception class, 282–283 
type, 157–166

SerializationFormatter, 163 

Servers
building cohesive assemblies, 305–306
creating internet service APIs, 

166–171 

Set accessors, 4–5 

Shape conversion, 56–60 

Shoemaker, Martin, 179 

Single-dimension indexers, 5 

Singleton pattern, 77–78
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Size, type, 109 

Skip(), 213–214 

Slicing the object, 105 

Small functions, 64–68 

SOAP serialization, 159 

Software design. See Design
expression 

SomeMethod(), 28 

Source compatibility, 6–7 

StackTrace class, 23 

Standard dispose pattern, 98–104 

StartDownload(), 217 

State
ensuring that 0 is valid for value 

types, 110–114
immutable atomic value type, 

114–123
protecting read-only properties 

from, 154–157
strong exception guarantee, 285–286 

Statements for resource cleanup, 87–94 

Static class member initialization, 77–79 

Static constructors, 77–79 

Static member variables, 96 

Static programming, 227 

Stop and Go, 207–208 

Storing data
isolated storage, 296–297 
with value types, 104–110

string serialization, 158 

String types
dynamic programming, 228–229 
ensuring 0 is valid state for, 113–114 
providing ToString(), 28–36 
using with compile-time constants,

8–9
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StringBuilder class, 97–98 

String.Format(), 97 

Striped partitions, 205–206 

Strong exception guarantee, 284–294 

Strong typing, 12

structs

interface implementation, 137–138 
pitfalls of GetHashCode(), 47 
understanding equality and

relationships, 36–44 

Structs vs. classes, 104–110 

Substitutability
with conversion operators, 56–60 
covariance and contravariance, 

171–177 

Subsystem addition, 150–152 

Support
for generic covariance and 

contravariance, 171–177
ICloneable, 194 
IComparable, 184–185 
IFormattable.ToString(), 33 
type for serialization, 157–166

Sutter, Herb, 285 

Symmetric property of equality, 38 

Syntax, query vs. looping, 51–56 

System.Array, 44 

System.Collections.ObjectModel.Read
OnlyCollection<T>, 157 

System.Diagnostics.Debug, 23 

System.Diagnostics.Trace, 23 

System.Exception, 281–282 

System.Linq.Enumerable class, 131–134 

System.Linq.Enumerable.Cast<T>,
236–239

326 ❘ Index

System.Linq.Expression class, 230 

System.Object, 275–279 

System.Object.ToString(), 28–36

T
Take(), 213–214 

Task class, 217–219 

Testing, 129 

Textual representation, 28–36

This, 6

this(), 85 

Throwing exceptions
creating exception classes, 281 
strong exception guarantee, 284–294

ToString(), 28–36 

TRACE environment variable, 26–28 

Trace.WriteLine, 24 

Transaction optimization, 166–171 

Transitive property of equality, 38 

Translation, exception, 284 

TrueForAll(), 144–145

try/catch, 224–225

try/finally, 87–94 

TryGetIndex, 248–249 

TryGetMember, 244–245, 248 

TrySetMember, 244–245 

Tuple<> classes, 44 

Types
avoiding conversion operators in

APIs, 56–60 
checking, 12 
defining and implementing

interfaces vs. inheritance, 129–138
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distinguishing between value and 
reference, 104–110

implementing ordering relations 
with IComparable<T> and 
IComparer<T>, 183–190

limiting visibility, 126–129 
making serializable, 157–166 
pitfalls of GetHashCode(), 44–51 
preferring is or as operators to

casts, 12–20 
pros and cons of dynamic, 227–236 
providing ToString(), 28–36 
reference types. See Reference types 
supporting generic covariance and

contravariance, 171–177 
understanding equality relationships,

36–44 
using compile-time vs. runtime

constants with, 8–9 
using dynamic for parameters that

receive anonymous, 239–243 
using DynamicObject or

IDynamicMetaObjectProvider for 
data-driven dynamic, 243–254

value types. See Value types

U
Unary operators, 245–246 

Unboxing operations
minimizing, 275–279
structs, 137–138 

Unit testing, 129 

Unmanaged resources
avoiding unnecessary object 

creation, 94–98
creating finalizer for, 99–100, 104
disposing of, 87–94
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Unrelated types, 135–137 

Updates
compile-time vs. runtime constants, 

10
using new only to react to base class, 

194–198

UsedMemory, 264–266 

User-defined conversions
leveraging runtime type of generic 

type parameters, 237–238
preferring is or as to casts, 13–15 

User-defined types
displaying as text, 28–36 
preferring is or as to casts, 14–15

using

implicit, xv–xvi 
for resource cleanup, 87–94

V
Value types

avoiding ICloneable, 191 
distinguishing between reference

types and, 104–110 
ensuring that 0 is valid state for, 
110–114 
expressing equality, 36–44
foreach support with casts, 18 
minimizing boxing and unboxing,

275–279 
pitfalls of GetHashCode(), 44–51 
preferring immutable atomic, 
114–123 
protecting from modification, 155 
using with compile-time constants,

8–9 

ValueType.Equals(), 38–39
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ValueType.GetHashCode(), 46–48 

Variable initialization, 74–77 

Variance support, 171–177 

Versions
storing with compile time constants, 

10–11
type serialization, 157–166 
when to use new modifier, 196–198

Virtual functions
for disposal, 100
new modifier and, 195–196 

Virtual methods
how interface methods differ from, 

139–143
overriding, 179–182 
using overrides instead of event

handlers, 179–182 

Virtual properties, 3–4 

Visibility, limiting type, 126–129 

Vlissides, John M., 146, 240 

Void return types, 27
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W
Wagner, Bill, xvii–xviii 

Web services
creating large-grain internet service

APIs, 166–171 
improving with expression API, 
255–257

WithDegreeOfParallelism(), 214 

WithExecutionMode(), 214 

WithMergeOptions(), 214 

Wrappers
dynamic object, 268–269 
envelope-letter pattern, 288–293 
protecting read-only properties from

modification, 157

X
XAML declarations, 182 

XML, LINQ to, 244–245
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